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Chapter 1

Introduction and
motivation

This book is intended to provide a basic introduction to some of the funda-
mental ideas and results of representation theory. In this preliminary chap-
ter, we start with some motivating remarks and provide a general overview of
the rest of the text; we also include some notes on the prerequisites—which
are not uniform for all parts of the notes—and discuss the basic notation
that we use.

In writing this text, the objective has never been to give the shortest or
slickest proof. To the extent that the author’s knowledge makes this possible,
the goal is rather to explain the ideas and the mechanism of thought that
can lead to an understanding of “why” something is true, and not simply to
the quickest line-by-line check that it holds.

The point of view is that representation theory is a fundamental theory,
both for its own sake and as a tool in many other fields of mathematics;
the more one knows, understands, and breathes representation theory, the
better. This style (or its most ideal form) is perhaps best summarized by P.
Sarnak’s advice in the Princeton Companion to Mathematics [24, p. 1008]:

One of the troubles with recent accounts of certain topics
is that they can become too slick. As each new author
finds cleverer proofs or treatments of a theory, the treat-
ment evolves toward the one that contains the “shortest
proofs.” Unfortunately, these are often in a form that
causes the new student to ponder, “How did anyone think
of this?” By going back to the original sources one can
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2 1. Introduction and motivation

usually see the subject evolving naturally and understand
how it has reached its modern form. (There will remain
those unexpected and brilliant steps at which one can only
marvel at the genius of the inventor, but there are far fewer
of these than you might think.) As an example, I usually
recommend reading Weyl's original papers on the repre-
sentation theory of compact Lie groups and the derivation
of his character formula, alongside one of the many mod-
ern treatments.

So the text sometimes gives two proofs of the same result, even in cases
where the arguments are fairly closely related; one may be easy to motivate
(“how would one try to prove such a thing?”), while the other may recover
the result by a slicker exploitation of the formalism of representation theory.
To give an example, we first consider Burnside’s irreducibility criterion, and
its developments, using an argument roughly similar to the original one,
before showing how Frobenius reciprocity leads to a quicker line of reasoning
(see Sections 2.7.3 and 2.7.4).

Finally, although I have tried to illustrate many aspects of representation
theory, there remains many topics that are barely mentioned or omitted
altogether. Maybe the most important are:

e The representation theory of anything else than groups; in par-
ticular, Lie algebras and their representations only make passing
appearances, and correspondingly those aspects of representation
theory that really depend on these techniques are not developed in
any detail. Here, the book [20] by Fulton and Harris is an outstand-
ing resource, and the book [18] by Etingof, Golberg, Hensel, Liu,
Schwendner, Vaintrob, and Yudovina illustrates different aspects,
such as the representations of quivers.

e [n a related direction, since it really depends on Lie algebraic meth-
ods, the precise classification of representations of compact Lie
groups, through the theory of highest weight representations, is
not considered beyond the case of SU3(C); this is however covered
in great detail in many other texts, such as [20] again, the book [37]
of Knapp (especially Chapter V), or the book [35] of Kirillov.

Acknowledgments. The notes were prepared in parallel with the
course “Representation Theory” that I taught at ETH Ziirich during the
Spring Semester 2011. Thanks are obviously due to all the students who
attended the course for their remarks and interest, in particular M. Liithy,
M Ruiist, I. Schwabacher, M. Scheuss, and M. Tornier, and to the assistants
in charge of the exercise sessions, in particular J. Ditchen who coordinated
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those. Thanks also to “Anonymous Rex” for a comment on a blog post,
to U. Schapira for his comments and questions during the class, and to A.
Venkatesh for showing me his own notes for a (more advanced) representa-
tion theory class, from which I derived much insight.

Thanks to the reviewers for the original book proposal for suggestions
and comments—in particular for some well-deserved critical comments con-
cerning certain of the choices of notation in the first version of the text, and
for pointing out that Proposition 2.3.23 is false over non-algebraically closed

fields.

Finally, many thanks to E. Dunne for reading the whole manuscript
carefully and making many suggestions and corrections!

1.1. Presentation

A (linear) representation of a group G is, to begin with, simply a homomor-
phism

o: G— GL(E),

where FE is a vector space over some field & and GL(E) is the group of
invertible k-linear maps on K. Thus one can guess that this should be a
useful notion by noting how it involves the simplest and most ubiquitous
algebraic structure, that of a group, with the powerful and flexible tools of
linear algebra. Or, in other words, such a map attempts to “represent” the
elements of G as symmetries of the vector space E (note that p might fail
to be injective, so that G is not mapped to an isomorphic group).

But even a first guess would probably not lead one to imagine how
widespread and influential the concepts of representation theory turn out to
be in current mathematics. Few fields of mathematics, or of mathematical
physics (or chemistry), do not make use of these ideas, and many depend
on representations in an essential way. We will try to illustrate this wide
influence with examples, taken in particular from number theory and from
basic quantum mechanies; already in Section 1.2 below we state four results,
where representation theory does not appear in the statements although
it is a fundamental tool in the proofs. Moreover, it should be said that
representation theory is now a field of mathematics in its own right, which
can be pursued without having immediate applications in mind; it does
not require external influences to expand with new questions, results and
concepts—but we will barely scratch such aspects.

The next chapter starts by presenting the fundamental vocabulary that is
the foundation of representation theory and by illustrating it with examples.
In Chapter 3, we then present a number of short sections concerning variants
of the definition of representations: restrictions can be imposed on the group
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G, on the type of fields or vector spaces F allowed, or additional regularity
assumptions may be imposed on ¢ when this makes sense. One can also
replace groups by other objects: we will mention associative algebras and
Lie algebras. These variants are all important topics in their own right, but
some will only reappear briefly in the rest of the book.

Continuing, Chapter 4 is an introduction to the simplest case of represen-
tation theory: the linear representations of finite groups in finite-dimensional
complex vector spaces. This is also historically the first case that was stud-
ied in depth by Dirichlet (for finite abelian groups), then Frobenius, Schur,
Burnside, and many others. It is a beautiful theory and has many important
applications. It can also serve as a “blueprint” to many generalizations: var-
ious facts, which are extremely elementary for finite groups, remain valid,
when properly framed, for important classes of infinite groups.

Among these, the compact topological groups are undoubtedly those
closest to finite groups, and we consider them in Chapter 5. Then Chapter
6 presents some concrete examples of applications involving compact Lie
groups (compact matrix groups, such as unitary groups U, (C))—the most
important being perhaps the way representation theory explains a lot about
the way the most basic atom, hydrogen, behaves in the real world. ...

The final Chapter 7 has again a survey flavor, and it is intended to
serve as an introduction to two other important classes of groups: algebraic
groups, on the one hand, and non-compact locally compact groups, on the
other hand. This last case is illustrated through the fundamental example
of the group SLa(R) of two-by-two real matrices with determinant 1. We
use it primarily to illustrate some of the striking new phenomena that arise
when compactness is missing.

In Appendix A, we have gathered statements and sketches of proofs for
certain facts, especially the Spectral Theorem for compact self-adjoint linear
operators, which are needed for rigorous treatments of unitary representa-
tions of topological groups.

Throughout, we also present some examples by means of exercises. These
are usually not particularly difficult, but we hope they will help the reader
to get acquainted with the way of thinking that representation theory often
suggests for certain problems.

1.2. Four motivating statements

Below are four results, taken in very different fields, which we will discuss
again later (or sometimes only sketch when very different ideas are also
needed). The statements do not mention representation theory, in fact two
of them do not even mention groups explicitly. Yet they are proved using
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these tools, and they serve as striking illustrations of what can be done using
representation theory.

Example 1.2.1 (Primes in arithmetic progressions). Historically, the first
triumph of representation theory is the proof by Dirichlet of the existence of
infinitely many prime numbers in an arithmetic progression, whenever this
is not clearly impossible:

Theorem 1.2.2 (Dirichlet). Let ¢ = 1 be an integer, and let a = 1 be an

integer coprime with q. Then there exist infinitely many prime numbers p
such that

p = a(modgq),

t.e., such that p is of the form p = nq + a for some n > 1.

For instance, taking ¢ = 10¥ to be a power of 10, we can say that, for
whichever ending pattern of digits d = di_1di_o---dp we might choose,
with d; € {0,1,2,3,4,5,6,7,8,9}, provided the last digit dy is not one of
{0,2,4,5, 6,8}, there exist infinitely many prime numbers p with a decimal
expansion where d are the final digits. To illustrate this, taking ¢ = 1000,
d = 237, we find

1237, 2237, 5237, 7237, 8237, 19237, 25237, 26237, 31237, 32237,
38237, 40237, 43237, 46237, 47237, 52237, 56237, 58237, 64237,
70237, 71237, 73237, 77237, 82237, 85237, 88237, 89237, 91237, 92237

to be those prime numbers ending with 237 which are < 100000.

We will present the idea of the proof of this theorem in Chapter 4. As
we will see, a crucial ingredient (but not the only one) is the simplest type of
representation theory: that of groups that are both finite and commutative.
In some sense, there is no better example to guess the power of representation
theory than to see how even the simplest instance leads to such remarkable
results.

Example 1.2.3 (The hydrogen atom). According to current knowledge,
about 75% of the observable weight of the universe is accounted for by
hydrogen atoms. In quantum mechanics, the possible states of an (isolated)
hydrogen atom are described in terms of combinations of “pure” states, and
the latter are determined by discrete data, traditionally called “quantum
numbers” —so that the possible energy values of the system, for instance,
form a discrete set of numbers, rather than a continuous interval.

Precisely, in non-relativistic theory, there are four quantum numbers for
a given pure state of hydrogen, denoted (n, £, m, s)—principal, angular mo-
mentum, magnetic, and spin” are their usual names—which are all integers,
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except for s, with the restrictions
n=1l, 0<f<n-1, —l<m<{l se{-1/2,1/2}.

It is rather striking that much of this quantum mechanical model of
the hydrogen atom can be “explained” qualitatively by an analysis of the
representation theory of the underlying symmetry group (see [64] or [58])
leading in particular to a natural explanation of the intricate structure of
these four quantum numbers! We will attempt to explain the easiest part of
this story, which only involves the magnetic and angular momentum quan-
tum numbers, in Section 6.4.

Example 1.2.4 (“Word” problems). For a prime number p, consider the
finite group SLy(F)) of square matrices of size 2 with determinant 1, and
with coefficients in the finite field F), = Z/pZ. This group is generated by
the two elements

(1.1) 8y = ((1) D Sy — G ?)

(this is a fairly easy fact from elementary group theory, see, e.g., [51, Th.
8.8] for K = F,, or Exercise 4.6.20). Certainly the group is also generated
by the elements of the set S = {s1,s] "', 82,55}, and in particular, for any
g € SLo(F,), there exist an integer k > 1 and elements g1, ..., gk, each of
which belongs to S, such that

g=2091° " Gk-

Given g, let £(g) be the smallest k for which such a representation exists.
One may ask, how large can /(g) be when g varies over SLy(F,)? The
following result gives an answer:

Theorem 1.2.5 (Selberg, Brooks, Burger). There exists a constant C = 0,
independent of p, such that, with notation as above, we have

Ug) < Clogp
for all g € SLy(F).
All proofs of this result depend crucially on ideas of representation the-
ory, among other tools. And while it may seem to be rather simple and not

particularly worth notice, the following open question should suggest that
there is something very subtle here.

Problem. Find an efficient algorithm that, given p and g € SLy(F)p), ea-
plicitly gives k < C'logp and a sequence (g1,...,gx) in S such that

9=91""" G-
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For instance, what would you do with

. ((1) (p —11)/2>

(for p = 3)7 Of course, one can take k = (p — 1)/2 and ¢g; = s for all 7,
but when p is large, this is much larger than what the theorem claims is
possible!

We will not prove Theorem 1.2.5, nor really say much more about the
known proofs. However, in Section 4.7.1, we present more elementary results
of Gowers (23] (and Nikolov and Pyber [47]) which are much in the same
spirit, and we use the same crucial ingredient concerning representations of
SLg(F,). The book [13] of Davidoff, Sarnak, and Valette gives a complete
elementary proof and is fully accessible to readers of this book.

In these three first examples, it turns out that representation theory
appears in a similar manner: it is used to analyze functions on a group, in a
way which is close to the theory of Fourier series or Fourier integrals; indeed,
both of these can also be understood in terms of representation theory for
the groups R/Z and R, respectively (see Section 7.3). The next motivating
example is purely algebraic.

Example 1.2.6 (Burnside’s p®¢® theorem). Recall that a group G is called
solvable if there is an increasing sequence of subgroups

l<«Gr<aGro1<---<aG1<aG = Gy,

each normal in the next (but not necessarily in GG), such that each successive
quotient G /Gy is an abelian group.

Theorem 1.2.7 (Burnside). Let G be a finite group. If the order of G s
divisible by at most two distinct prime numbers, then G is solvable.

This beautiful result is sharp in some sense: it is well known that the
symmetric group &g of order 5! = 120 is not solvable, and since 120 is
divisible only by the primes 2, 3 and 5, we see that the analogue statement
with 2 prime factors replaced with 3 is not true. (Also it is clear that the
converse is not true either: any abelian group is solvable, and there are such
groups of any order.)

This theorem of Burnside will be proved using representation theory
of finite groups in Section 4.7.2 of Chapter 4, in much the same way as
Burnside proceeded in the early 20th century. It was only in the late 1960s
that a proof not using representation theory was found, first by Goldschmidt
when the primes p and ¢ are odd, and then independently by Bender and
Matsuyama for the general case. There is a full account of this in [29, §7D],
and although it is not altogether overwhelming in length, the reader who
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compares them will probably agree that the proof based on representation
theory is significantly easier to digest.

Remark 1.2.8. There are even more striking results which are much more
difficult. For instance, the famous “Odd-order Theorem” of Feit and Thomp-
son states that if G has odd order, then (G is necessarily solvable.

1.3. Prerequisites and notation

In Chapters 2 and 4, we depend only on the content of a basic graduate
course in algebra: basic group theory, abstract linear algebra over fields,
polynomial rings, finite fields, modules over rings, bilinear forms, and the
tensor product and its variants. In later chapters, other structures are in-
volved: groups are considered with a topology, measure spaces and integra-
tion theory is involved, as well as basic Hilbert space theory and functional
analysis. All these are used at the level of introductory graduate courses.

We will use the following notation:

(1) For a set X, |X| € [0, +0] denotes its cardinality, with | X| = oo if X
is infinite. There is no distinction in this text between the various infinite
cardinals.

(2) We denote by R™* the interval |0, +90[ seen as a subgroup of the
multiplicative group R*.

(3) If k is a field and d = 1 an integer, an element of GL4(k) (or of
GL(F) where FE is a finite-dimensional k-vector space) is called unipotent if
there exists n = 1 such that (u — Idg)™ = 0.

(4) Given a ring A, with a unit 1 € A, and A-modules M and N, we
denote by Hom(M, N) or Hom (M, N) the space of A-linear maps from M
to N.

(5) If E is a vector space over a field k, E’ denotes the dual space
Homy (E, k). We often use the duality bracket notation for evaluating linear
maps on vectors, i.e., for v € E and A € E', we write

I 0) = X(v).

(6) For f: M — N, a map of A-modules, Ker(f) and Im(f) denote the
kernel and the image of f, respectively.

(7) A projection f : M — M is a linear map such that fo f = f. If
f is such a projection, we have M = Im(f) @ Ker(f); we also say that f is
the projection on Im(f) with kernel Ker(f).

(8) Given A and M, N as above, M ® N or M ®4 N denotes the
tensor product of M and N. Recall that M ® N can be characterized up to
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isomorphism by the existence of canonical isomorphisms
Homa(M ® N, N;) ~ Bil(M x N, Ny)
for any A-module N;, where the right-hand side is the A-module of all
A-bilinear maps
B: Mx N — Nj.

In particular, there is a bilinear map
Bo: MxN—M®N

that corresponds to Ny = M ® N and to the identity map in
Hom (M ® N, Np). One writes v ® w instead of Fy(v, w).

The elements of the type v ® w in M ® N are called pure tensors. Note
that usually not all elements in the tensor product are pure tensors and that
one can have v @ w = v' @ w’ even if (v, w) + (v, w’).

If A=k is a field and (e;), (f;) are bases of the k-vector spaces M and
N, respectively, then (e;® f;) is a basis of M ® N. Moreover, any v € M@N
has a unique expression

Y= Zz,;j®fj

j
with v; € M for all j.

(9) Given a ring A and A-modules given with linear maps
M L 5 e,
the sequence is said to be exact if Im(f) = Ker(g) in M. In particular, a
sequence
0— M LM
is exact if and only if Ker(f) = 0, which means that f is injective, and a
sequence
M % M" — 0
is exact if and only if Im(g) = Ker(0) = M", i.e., if and only if g is surjective.
A sequence

0— M Lo M5 M" 0,

where all three intermediate 3-term sequences are exact, is called a short
exact sequence. This means that f is injective, g is surjective and the image
of f coincides with the kernel of g. It is also usual to say that M is an
extension of M” by M’'. Note that there is no typo here: this is indeed the
standard terminology, instead of speaking of extensions of M’.
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(10) Given a vector space E over a field k and a family (F});e; of linear
subspaces of E, we say that the subspaces F; are in direct sum if the subspace
they span is a direct sum of the Fj, or in other words, if

Fi (@ (Z F j) =0
gel
J=+i
for all 7 € I (equivalently, any family (f;);c; of vectors in F;, which are zero
for all but finitely many indices i, is linearly independent).

(11) Given a group G, we denote by [G, G| the commutator group (or
derived subgroup) of G, which is generated by all commutators [g,h] =
ghg~th™1. Note that not all elements of [G, G] are themselves commutators;
see Remark 4.4.5 for examples. The subgroup [G,G] is normal in G, and
the quotient group G/|G, G| is abelian; it is called the abelianization of G.

(12) We denote by F,, the finite field Z/pZ, for p prime and, more gen-
erally, by F, a finite field with g elements, where ¢ = p", n > 1, is a power
of p. In Chapter 4, we need some simple facts about these, in particular the
fact that for each n > 1, there is—up to isomorphism-—a unique extension
k/F,, of degree m, i.e., a finite field k£ of order ¢ = p". An element x € k is
in F,, if and only if 27 = x (e.g., because the equation X? — X = 0 has at
most p roots, and all = € F), are roots). The group homomorphism

B — FX
N = N, ; Bl a
M s e e
(called the norm from k to F,) is well defined and surjective. Indeed, it
is well defined because one checks that N(z)? = N(z), and surjective, e.g.,
because the kernel is defined by a non-zero polynomial equation of degree
at most 1+p+p+---+p» 1 = (p*—1)/(p—1), and hence contains at most
that many elements, so the image has at least p— 1 elements. Moreover, the
kernel of the norm is the set of all z which can be written as y/yP for some
yek™.
Similarly, the homomorphism of abelian groups
F, — F,

Tr:TTk/Fp:{ s maP . g

is well defined and is surjective; it is called the trace from k to F,.

(13) When considering a normed vector space E, we usually denote the
norm by |v|, and sometimes write |v|g, when more than one space (or
norm) are considered simultaneously.

(14) When considering a Hilbert space H, we speak synonymously of an
inner product or of a positive-definite hermitian form, which we denote (-, -)
or (-, )y if more than one space might be understood. We use the convention



