PROGRAMMING WITH

avaScri

Algorithms and Applications for Desktop
and Mobile Browsers

John David Dionisio
Ray Toal

* PROGRAMMING WITH

avaScript

Algorithms and Applications for Desktop
and Mobile Browsers

John David Dionisio

Layola Marymount University

Ray Toal

Loyola Marymount University

World Headquarters
Jones & Bartlett Learning
5 Wall Street

Burlington, MA 01803
978-443-5000
info@jblearning.com
www.jblearning.com

Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact
Jones & Bartlett Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com.

Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations,
professional associations, and other qualified organizations. For details and specific discount information, contact
the special sales department at Jones & Bartlett Learning via the above contact information or send an email to
specialsales @ jblearning.com.

Copyright © 2013 by Jones & Bartlett Learning, LLC, an Ascend Learning Company

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form, electronic
or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written per-
mission from the copyright owner.

Programming with JavaScript: Algorithms and Applications for Desktop and Mobile Browsers is an independent publication
and has not been authorized, sponsored, or otherwise approved by the owners of the trademarks referenced in this product.
Some elements of this book may fall under the Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
license—contact Jones & Bartlett Learning for specific licensing information.

Production Credits

Publisher: Cathleen Sether

Senior Acquisitions Editor: Timothy Anderson

Managing Editor: Amy Bloom

Director of Production: Amy Rose

Marketing Manager: Lindsay White

V.P., Manufacturing and Inventory Control: Therese Connell

Associate Photo Researcher: Lauren Miller

Composition: Northeast Compositors, Inc.

Cover Design: Kristin E. Parker

Cover Image: Light: © yienkeat/ShutterStock, Inc.; Laptop: © Haywiremedia/ShutterStock, Inc.
Photo display: © James Thew/ShutterStock, Inc.; SmartPhone: © lassedesignen/Fotolia.com
App Icons: © abdulsatarid/ShutterStock, Inc.

Printing and Binding: Courier Kendallville

Cover Printing: Courier Kendallville

Library of Congress Cataloging-in-Publication Data
Dionisio, John David N., 1970-

Programming with JavaScript : algorithms and applications for desktop and mobile browsers / John David Dionisio, Ray
Toal.

p. cm.

Includes bibliographical references and index.

ISBN-13: 978-0-7637-8060-9 (pbk.)

ISBN-10: 0-7637-8060-X (pbk.)

1. JavaScript (Computer program language) 2. Computer algorithms. 3.
Application software—Development. 1. Toal, Ray. II. Title.

QA76.73.J38D57 2013

005.3—dc23

2011018738

6048

Printed in the United States of America
1514 13 1211 10987654321

Dedication

Love and thanks as always to Mei Lyn, Aidan, Anton, and Aila for their support.
JDND

Preface

What comes to mind when you hear the terms programming and computer sci-
ence? Game-playing, socially challenged geeks? Computers? Those are certainly
the popular images. In reality, however, anyone can program,' and computer sci-
ence is about much more than computers. You are just as likely to see people
programming phones, robots, navigation systems, and factory machinery as you
are desktop computers.

Programming with JavaScript: Algorithms and Applications for Desktop and
Mobile Browsers is an introduction to some of the main ideas and principles of com-
puter science, with some forays into the related disciplines of software engineering
and information technology. It aims to convey these principles by encouraging you
to develop fundamental skills in programming. Computer science deals with many
things—computation, algorithms, software systems, data organization, knowledge
representation, language, intelligence, and learning—but it is programming expe-
rience that enables you to gain a better understanding of these topics, and the
tools to explore them in depth.

Objectives
This book aims to:

m Introduce the field of computing by showing that it is a natural science,
encompassing computer science, software engineering, computer engineering,
information systems, and information technology.

L«Anyone can” means that great programmers can, and do, come from any background, not
that programming can be learned without effort [Bra07].

XV

I i

Preface

m Dispel common myths about what computing is and show that computing
provides a foundation for careers in many different areas, including medicine,
law, business, finance, entertainment, the arts, education, economics, biology,
nanotechnology, and gaming.

m Teach a respect for programming aesthetics, standards, style conventions,
and judicious commenting early in the text, with the goal of preventing
common bad habits from ever forming.

m Convey the power of JavaScript (as compared to other languages) by covering
difficult material that is traditionally not taught to beginners. Some of this
advanced material is isolated into sections marked with an asterisk (*) or is
included in the appendices.

m Show that programming is not just about getting programs to work correctly,
but is also about constructing programs that are readable, easily modifiable,
and that run efficiently.

m Provide relevant case studies in distributed computing, touch-based user in-
terfaces on phones and tablets, and graphics for both the student looking
forward to employment and the professional programmer looking to keep
current in modern software technology.

Organization

We’ve structured this text so that you can read it cover to cover if you like. It
tells a story about computing, programming, and especially JavaScript, outlined
as follows:

m Introduction to the field of computing (Chapter 1)
m Theory and practice of (JavaScript) programming (Chapters 2-8)

— Getting started with programming (Chapter 2)
— Data (Chapter 3)
— Programming in the small I: Statements (Chapter 4)

Preface

— Programming in the small II: Functions (Chapter 5)
— Programming in the small III: Events (Chapter 6)
— Programming in the large I: Software systems construction (Chapter 7)

— Programming in the large II: Distributed computing (Chapter 8)

m Advanced topics (Chapters 9-10)

While you need not read the text exactly cover to cover, you may want to keep
the chapter dependencies in mind, shown here:

Note that Chapter 1 stands alone: it’s optional. Readers who want to jump right
in to programming can start with Chapter 2.

Audience

This text is designed as a primary resource for a first-year college course in
computer science or software engineering. No previous programming experience
is assumed. However, advanced students and professional programmers new to
JavaScript should also find the text useful, as we do not shy away from technical
areas of the language perceived as difficult or “advanced.” In fact, we believe that
professional programmers can benefit a great deal from the numerous review ques-
tions and exercises spread throughout the text, as well as our coverage of modern
topics in the JavaScript world, including ECMAScript 5, HTML 5, Ajax, jQuery,
Graphics, and Animation.

xvii [

B i

Preface

JavaScript

A note to instructors: We enthusiastically adopt JavaScript as the language with
which to train new computer scientists. JavaScript has not traditionally found
much traction in introductory university-level computer science courses; this is
probably due to various misunderstandings about the language [Cro01]|. We argue,
however, that JavaScript is an ideal language for such courses.

First, thanks to the ubiquity of web browsers, every student already has access
to a JavaScript interpreter; no download or installation is required. Second, the
language finds middle ground in the debate between professors who claim that
beginning students should focus not on programming but on abstract algorithms
given in pseudocode, and those who argue that students require hands-on program-
ming experience to make concepts stick. JavaScript features a surprisingly clear
and simple syntax; students can start programming immediately without fretting
about classes, “public static” methods, the mysterious void, consoles, packages,
and so on. We realize many schools have tried the simple-language approach in
CS1 with ML, Scheme, Ruby, or Python, but with the rise of the Web as a plat-
form for running applications (both on desktop and mobile devices), none of these
languages can boast nearly the same degree of popularity as JavaScript.

Finally, as functional programming, long thought of as being of interest only
to academic computer scientists, becomes more important in the new world of
multicore processors and Big Data, JavaScript as a teaching language makes a great
deal of sense. Functional programming in JavaScript tends to be fairly accessible
to beginning students, perhaps more so than languages known for having “too
many parentheses” or a reliance on special constructs like blocks, continuations,
or generators.

Additional Resources

Visit go.jblearning.com/Dionisio for answers to end-of-chapter exercises, source
code, PowerPoint Lecture Outlines, errata, and additional bonus material outside
the scope of this text.

Preface

Acknowledgments

We’d like to express our thanks to Loren Abrams, Turn Media; B. J. John-
son, Claremont Graduate University; Philip Dorin, Loyola Marymount University;
Daniel Bogaard, Rochester Institute of Technology; Michael Hennessy, University
of Oregon; and Laurence Toal, Wellesley College, for their careful readings of early
drafts and many constructive comments. Thanks also to Kira Toal and Masao
Kitamura for providing several images, and to Jasmine Dahilig, Tyler Nichols, and
Andrew Fornery for their assistance in preparing ancillary materials. We are also
grateful for the excellent support from the staff at Jones & Bartlett Learning, in-
cluding Tim Anderson, Senior Acquisitions Editor; Amy Bloom, Managing Editor;
and Amy Rose, Production Director, without whose professionalism and hard work
this book would not have been possible. We’d also like to thank Caskey Dickson
and Technocage, Inc., for hosting our cross-site scripting examples. Without them,
there would be no sites to cross!

xix N

Contents

Preface

1 The
1.1
1.2

1.3
1.4

Field of Computing

The Five Disciplines of Computing
1.2.1 Computer Science
1.2.2 Software Engineering,
1.2.3 Computer Engineering
1.2.4 Information Technology
1.2.5 Information Systems
Careers in Computing
Myths about Computing
Exercises

2 Programming

2.1
2.2

2.3

Learning to Program
Getting Started L
2.2.1 The Browser Address Box
222 Runner Pages
2.2.3 Interactive Shells
224 Filgs v . o v wo s 0 g5 v wm s wmE s wE mE A E s s
Elements of Programs
2.3.1 EXpressions
2.3.2 Variables

XV

— O N O Ot O s W W N -

—

I i

Contents

2.3.3 Statements 39

2.4 The Practice of Programming 41
2.4.1 Comments. ot 42
2.4.2 Coding Conventions 43
2.4.3 Code Quality Tools 44

2.5 The JavaScript Programming Language 46
Exercises B s B sk R i B M F B R S W B 48

3 Data 55
3.1 Data Types o o i v e e e e e e e e e 56
3:2 Trith Valies - « 5 + o ¢ 89 8 s 9% 5% s & s 5 s & s 5w 66 & & 57
33 NUMBEET: . w5 s so ¢ sim o5 ¢ A GE s 9+ 8@ 66 5 68 § @ 59
3.3.1 Numeric Operations 59
3.3.2 Size and Precision Limits 60
333 NaN . . .o e e e e e 62
3.3.4 Hexadecimal Numerals 63

B TOXb . coi v e e e e e e we e e e me e s e o e e e e 6 e 64
3.4.1 Characters, Glyphs, and Character Sets 64
3.4.2 String Operationso 69

3.5 Undefined and Null 70
3.6 Objects e 71
3.6.1 Object Basics 71
3.6.2 Understanding Object References 74
3.6.3 Object Prototypes I Y A EE R 76
3.6.4 Self-Referential Objects 79

Bl AITAYS + : s s 0 2 98 D s G 5% # 8 : @@ @5 546 @6 m e &8 b 80
3.8 Type Conversion ¢ v v v v v v v v v v i oo e 83
381 WeakTypPInE . « v o s ws s v s s v @w s 505 a5 s 83
3.8.2 Explicit Conversion 86
3.8.3 Loose Equality Operatorso uun. 89

3.9 The typeof Operator®, 90

Exercises e e e e e e e e 92

Contents

4 Statements 99
4.1 The Declaration Statement 100
4.2 The Expression Statement 101
4.3 Conditional Execution 104
4.3.1 The if Statement 104
4.3.2 The Conditional Expression 107
4.3.3 The switch Statement 107
4.3.4 Avoiding Conditional Code with Lookups 110
4.3.5 Short-Circuit Execution 115

4.4 Tteration T . 117
4.4.1 The while and do-while Statements 117
4.4.2 The for Statement 119
4.4.3 The for-in Statement 126

4.5 Disruption 128
4.5.1 Dbreak and continue 129
4.5.2 Exceptions 132

4.6 Coding Formsto Avoid 135
4.6.1 Blockless Compound Statements 136
4.6.2 TImplicit Semicolon 138
4.6.3 Implicit Declarations 138
4.6.4 Increment and Decrement Operators 139
4.6.5 The with Statement 139
PINETOINEE & v « 6 ¢ 65 66 ¢ 96 w8 L€ d @5 § 5§ € Wi & 3¢ 56 141

5 Functions 147
5.0 Black BOXES c s « v « 5o 50 5 515 w6 6 @ 5 2w v 5 s ms 2w s i wi 148
5.2 Defining and Calling Functions 149
5.3 Examples and More Examples. 152
5.3.1 Simple One-Line Functions 152
5.3.2 Validating Arguments 154
5.3.3 Passing Object References as Arguments. 156
534 Preconditions . . « « - v s w5 4 55 55 v 5 s s e s e s 85 5 a 158
5.3.5 Separation of Concerns 160
5.3.6 The Fibonacci Sequence 163

vii [N

I i

Contents

B SCOPE + 5 s wn v 0 65 « 86 a0 56 an « 55 6 5 @5 s u et 164
5.5 Functions as Objects 168
5.5.1 Properties of Functions 168
5.5.2 Functions as Properties 169
5:5.3 Comnstructors « v o v oo v o v o s 4 e 6 e w0 we aw 171

58 ©Context . : « i oo 5w 5 5 s w5 w5 w5 G s 5w s s s e s e S E o 178
5.7 Higher-Order Functions 180
5.8 Function Declarations Versus Function Expressions®* 184
Exercises e 188

6 Events 197
6.1 User Interaction 198
6.1.1 A Programming Paradigm Shift 198
6.1.2 Events by Example: The Temperature Converter Web Page 201

6.2 Defining User Interface Elements 203
6.2.1 Web Pages Are Structured Documents 203
6.2.2 Elements That Produce User Interface Controls 206

6.3 Programmatically Accessing User Interface Elements 211
6.3.1 The document Object 212
6.3.2 Fun with DOM Properties 215
6.3.3 A Place to “Play” 217
6.3.4 Manipulating User Interface Controls 217
6.3.5 Walking the DOM* ¥ 2 @ 5 G4 TW BN BB E FEE 221

64 Event Handlers i i i it i 228
6.4.1 Anatomy of an Event Handler 229
6.4.2 Event Handlers Are Functions Are Objects 230

6.0 BEvent ObJects . « « ¢ « 5 & ohs 513 5.6 srs™ o % dos wm 5 s @ o 5 233
6.6 Event Implementation Details 235
6.6.1 Event Capturing and Bubbling 235
6.6.2 Default Actions 237
6.6.3 Assigning Event Handlers 240
6.6.4 Events Based on the Passage of Time 242

6.6.5 Multitouch, Gesture, and Physical Events 244

Contents

6.7 Case Study: Tic-Tac-Toe 252
6.7.1 Files and Connections 252
6.7.2 Initialization Lo 254
6.7.3 Event Handling 258
6.74 TheBusinessLogic. 258
BXOTCISEE « o o 4 e oo b% '8 oNa ¢ 5 ¢ a s 58 s @ Pala s s 261
Software Construction 273
7.1 Software Engineering Activities 274
7.2 Object-Oriented Design and Programming 275
7.2.1 Families of Objects 275
7.2.2 Imheritance 280
7.2.3 Information Hiding 285
7.2.4 Property Descriptors* 289

7.3 JavaScript Standard Objects 292
7.3.1 Built-in Objects 293
7.3.2 Web Browser Host Objects 308

Td ModuleS . oo o5 s 5 ¢ e w6 56 w@ 5@ 56 0 s ® & &6 &5 89 o 310
7.4.1 Simple Modules 311
7.4.2 The Tic-Tac-Toe Game as a Module 313

7.5 The jQuery JavaScript Library 318
76 Performance : « « « o s o7s o s 5 s 56 316 o8 06 s 6 5 w5 54 65 55 325
7.6.1 Run-Time Efficiency 325
7.6.2 Space Efficiency o L. 330
7.6.3 Load-Time Efficiency 331
7.6.4 User Interface Efficiency 333

7.7 Unit Testing o L 337
7.7.1 An Introductory Example 339
7.7.2 The QUnit Testing Framework 341
7.7.3 Testing in the Software Development Process 346
Exercises 347
Distributed Computing 359
8.1 Distributed Computing Models 360

ix [

I

Contents

8.2 Data Interchange Formats 362
82.1 Plain Text. 362
822 XML. e e e e e 364
823 ISON-ccimeoeowrpmpimnmblesruadelbyos. 369
R2ZA4 YAML cs as e sn s o srbsima'ma as bom o o 373

8.3 Synchronous vs. Asynchronous Communication 375
8 AJAX o vov s 6 5 m i s e m m s B s B s M E G mw ek w s a 377
841 AjaxinjQuery . . . - o c o v vt vt e vt e e e 377
8.4.2 Ajax Without a Library 384

8.5 Designing Distributed Applications 388
8.5.1 Uniform Resource Identifiers 388
8.5.2 REST e 393
8.5.3 Separation of Distributed Application Concerns 399
8.5.4 Server-Side Technologies™ 404

8.6 Security e 406
8.6.1 The Web, the Bad, and the Sandbox 407
8.6.2 The Same Origin Policy 409
8.6.3 Cross-Site Scripting 415
8.6.4 Mashups. 420

8.7 Case Study: Events and Trending Topics 424
8.7.1 Date Selection User Interface 429
8.7.2 Ajax Connection 431
8.7.3 Result Processing e st d e w F e 435
8.7.4 Data (Mashup) Display 439
Exercises 443

9 Graphics and Animation 463
9.1 Fundamentals e 464
9.1.1 Coordinate Spaces e 464
9.1.2 Colors e 466
9.1.3 Pixels vs. Objects/Vectors 467
9.1.4 Animation. 470

92 HTMLand CSS ¢ it i it ittt e e s e 471

9.2.1 HTML Elements for Graphics 471

9.3

9.4

9.5

9.6

Contents
9.2.2 CSS e e e e 473
9.2.3 Visual Properties 477
9.2.4 Absolute Position 483
9.2.5 Case Study: Bar Chart 485
9.2.6 Case Study: Towers of Hanoi Display 487
Animation in HTML and CSS. 491
9.3.1 Constant Velocity 492
932 FadingInand Out 493
9.3.3 Animating Other Properties 495
9.3.4 Ramped (or Eased) Animation 495
9.3.5 Declarative CSS Animation B s A E B mue me s 497
The canvas Element 499
9.4.1 Instantiatingacanvas 499
9.4.2 The Rendering Context 500
9.4.3 Drawing Rectangles 502
9.4.4 Drawing Lines and Polygons 503
9.4.5 Drawing Arcsand Circles 505
9.4.6 Drawing Bézier and Quadratic Curves 507
9.4.7 Working with Images 509
9.4.8 Transformations e e s B L E S RSB B s S 514
9.49 Animation. 521
9.4.10 canvas by Example 523
SVG . e e e 529
9.5.1 Seeing SVG in a Web Browser 530
9.5.2 SVG Case Study: A Bézier Curve Editor 533
9.5.3 Objects in the Drawing 535
9.5.4 Reading and Writing Attributes 536
9.5.5 Interactivity (aka Event Handling Redux) 540
9.5.6 Other SVG Features 544
3D Graphics with WebGL 545
9.6.1 WebGL Isthe3D canvas 546
9.6.2 Case Study: The Sierpinski Gasket 546
9.6.3 Defining the 3D Data 549
9.64 ShaderCode 0.iiio.. 551

xi 1N

B i

Contents

9.6.5 Dr

awing the Scene

9.6.6 Interactivity and Events
9.7 Other Client-Side Graphics Technologies
9.71 Flash 0o ot i s o e e e e e e e
902 JOVA 55 5% 5% 5.8 5. 8.5 8 5 @ i pd Bw s e s s da s @ bk s
973 VML 5 ¢ 206 50 + 5 3 6 s 5 sfws soms nw i 6 ss oliea

Exercises

10 Advanced To

pics

10.1 Regular Expressions vt i i

10.1.1 Introducing Regular Expressions
T2 CEPIUTE: & s ¢ ww scm o v o s B 5 95 B0 €3 56 5.8 5 5 & &0
10.1.3 Quantifiers
10.1.4 Backreferenices . . . « « + w s 5« o s 5 ¢« w5 w5 s w4 5 s v s
10.1.5 Regex Modifiers,
10.1.6 The RegExp Constructor
10.1.7 More on Regular Expressions

10.2 Recursion

10.2.1 What Is Recursion?
10.2.2 Classic Examples of Recursion

10.2.3 Recursion and Family Trees
10.2.4 When Not to Use Recursion

10.3 Caching
10.4 MapRedu

CE v v e B

10.4.1 Using map, filter, and reduce

10.4.2 Implementation

10.4.3 MapReduce in Large-Scale Data Processing

10.5 Dynamically Creating Event Handlers

Exercises

A JavaScript Language Reference

B Numeric Enc

C Unicode

oding

577
578
578
581
582
583
584
585
286
586
o87
588
600
603
605
609
609
612
613
614
619

627

655

661

