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Preface

This book provides an introduction to the theory of dynamical systems with the
aid of the Maple algebraic manipulation package. It is written for both senior un-
dergraduates and first-year graduate students. The first half of the book deals with
continuous systems using ordinary differential equations (Chapters 1-12) and the
second halfis devoted to the study of discrete dynamical systems (Chapters 13-20).
(The author has gone for breadth of coverage rather than fine detail and theorems
with proof are kept at a minimum.) The material is not clouded by functional
analytic and group theoretical definitions, and so is intelligible to readers with a
general mathematical background. Some of the topics covered are scarcely cov-
ered elsewhere. Most of the material in Chapters 9-12, 16, 17, 19, and 20 is at
postgraduate level and has been influenced by the author’s own research interests.
It has been found that these chapters are especially useful as reference material for
senior undergraduate project work. The book has a very hands-on approach and
takes the reader from the basic theory right through to recently published research
material.

An efficient tutorial guide to the Maple symbolic computation system has
been included in Chapter 0. Students should be able to complete tutorials one and
two in under two hours depending upon their past experience. The author suggests
that the reader should save the relevant example programs listed throughout the
book in separate files. These programs can then be edited accordingly when at-
tempting the exercises at the end of each chapter. The Maple commands, programs
and output can also be viewed in color over the Web at either
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http://www.birkhauser.com/cgi-win/ISBN/0-8176-4150-5

or Maple’s applications site,

http://www.maplesoft.com/apps/.

Throughout the book, Maple is viewed as a tool for solving systems or producing
eye-catching graphics. The author has used Maple V release 5.1 and Maple 6 in
the preparation of the material. However, the Maple programs have been kept as
simple as possible and should also run under later versions of the package.

The first few chapters of the book cover some theory of ordinary differential
equations and applications to models in the real world are given. The theory of dif-
ferential equations applied to chemical kinetics and electric circuits is introduced
in some detail. Chapter 1 ends with the existence and uniqueness theorem for the
solutions of certain types of differential equation. The theory behind the construc-
tion of phase plane portraits for two-dimensional systems is dealt with in Chapters
2 and 3, and applications to modeling the populations of interacting species are
discussed in Chapter 4. Limit cycles, or isolated periodic solutions, are introduced
in Chapter 5. Since we live in a periodic world, these are the most common type
of solution found when modeling nonlinear dynamical systems. They appear ex-
tensively when modeling both the technological and natural sciences. Hamiltonian
(conservative) systems and stability are discussed in Chapter 6, and Chapter 7 is
concerned with how planar systems vary depending upon a parameter. Bifurcation,
multistability, and bistability are discussed.

The reader is first introduced to the concept of chaos in Chapters 8 and
9, where three-dimensional systems and Poincaré maps are investigated. These
higher-dimensional systems can exhibit strange attractors and chaotic dynamics.
Once again the theory can be applied to chemical kinetics and electric circuits; a
simplified model for the weather is also briefly discussed. Both local and global
bifurcations are investigated in Chapter 10. The main results and statement of the
famous second part of David Hilbert’s sixteenth problem are listed in Chapter 11.
In order to understand these results, Poincaré compactification is introduced. The
study of continuous systems ends with one of the authors specialities—limit cycles
of Liénard systems. There is some detail on Liénard systems in particular in the
first half of the book, but they do have a ubiquity for systems in the plane.

Chapters 13-20 deal with discrete dynamical systems. Chapter 13 starts with
a general introduction to recurrence relations and iteration. Applications to popu-
lation modeling and harvesting and culling policies is then investigated. Chaos in
discrete systems is investigated and bifurcation diagrams are plotted in Chapter 14.
The concept of universality is discussed for the first time. Complex iterative maps
are introduced in Chapter 15. Julia sets and the now famous Mandelbrot set are
plotted. As a simple introduction to optics, electromagnetic waves and Maxwell’s
equations are studied at the beginning of Chapter 16. A brief history of nonlin-
ear bistable optical resonators is discussed and the simple fiber ring resonator is
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analyzed in particular. Chapters 16 and 17 are devoted to the study of these opti-
cal resonators and topics such as bifurcation, bistability, chaos, chaotic attractors,
instabilities, linear stability analysis, multistability, and nonlinearity, which have
already been dealt with in earlier chapters, are reviewed. Some simple fractals
may be constructed using pencil and paper in Chapter 18, and the idea of fractal
dimension is introduced. Fractals may be thought of as identical motifs repeated
on ever reduced scales. Unfortunately, most of the fractals appearing in nature are
not homogeneous but are more heterogeneous, hence the need for the multifractal
theory given in Chapter 19. The final chapter is devoted to the new and exciting
theory behind chaos control. For most systems, the maxim used by engineers in
the past has been “stability good, chaos bad,”” but more and more nowadays this
is being replaced with “stability good, chaos better.” There are exciting and new
applications to cardiology, laser technology, and space research, for example.

This book is informed by the research interests of the author which are cur-
rently nonlinear ordinary differential equations, nonlinear optics and multifractals.
Some references include recently published research articles.

The prerequisites for studying dynamical systems using this book are under-
graduate courses in linear algebra, real and complex analysis, calculus and ordinary
differential equations; a knowledge of a computer language such as Fortran or Pas-
cal would be beneficial but not essential.

I would like to express my sincere thanks to David Chillingworth (Southamp-
ton), Colin Christopher (Plymouth), Yibin Fu (Keele), Lida Nejad (MMU), Tito
Toro O.B.E. (MMU), Alan Steele (Nortel, Canada), Edward Vrscay (Waterloo,
Canada), and the referees for their constructive comments on the first draft of the
book. My thanks also go to Caroline Graf (Birkhéuser), Tom Grasso (Birkh4user),
and Paul Goossens (Maple). Special thanks go to Elizabeth Loew for all her help
with the cover, production, and manufacturing of my book, as well as to Ann
Kostant (Executive Editor, Mathematics and Physics, Birkhduser). I am especially
grateful to John Spiegelman for his care and attention to the many small but im-
portant details that had been overlooked, as well as the beautiful typesetting of
my book. It was a pleasure to work with him. Finally, thanks to my family and
especially Gaynor for all their love and support.

Stephen Lynch
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0
A Tutorial Introduction to Maple

Aims and Objectives

» To provide a tutorial guide to the Maple package.
» To give practical experience in using the package.
» To promote self-help using the on-line help facilities.
On completion of this chapter, the reader should be able to
* use Maple as a mathematical tool;
 produce simple Maple programs;
* access some Maple commands and programs over the Web.

It is assumed that the reader is familiar with either the Windows or Unix
environment.

Commands listed in Sections 0.1 and 0.2 have been chosen to allow the reader
to become familiar with Maple in a few hours. These tutorial sheets have been used
with great success over a number of years with both mathematics and engineering
undergraduate students. Experience has shown that the Maple worksheets can be
completed in under two hours, after which students are able to adapt the commands
to tackle their own problems. This method of teaching works well with computer
laboratory class sizes of no more than 20 students to one staff member. Section 0.3
gives a brief introduction to programming with Maple.
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If any problems result, there are several options. For example, there is an
excellent help browser in Maple, the 10 most common errors are listed in Section
0.4, and Maple commands and programs with the respective output from this text
can be found on the Web at

http://www.birkhauser.com/cgi-win/ISBN/0-8176-4150-5

or
http://www.maplesoft.com/apps/.

The Maple worksheets on the Web may be edited and copied.
Remember to save your Maple files at regular intervals. You could label your
first file as tutl.mws, for example.

0.1 Tutorial One: The Basics (One Hour)

There is no need to copy the comments; they are there to help you.

Click on the Maple icon and copy the command after the > prompt.

Maple Commands Comments

> # This is a comment # Helps when writing
# programs.

> 1+2-3; # Simple addition and
# subtraction.

> 2*%3/7; # Multiplication and
# division.

> 2*%6+372-4/2;

> (5+3)*(4-2);

> sqgrt(100); # The square root.

> nl:=10: # The colon suppresses
# the output.

> lprint(‘nl:=",nl): # Use the ‘' character
# for quotes.

> nl”(-1); # Negative powers.

> sin(Pi/3); # Use capital P for Pi.

> y:=sin(x)+3*x"2; # Equations and
# assignments.

> evalf (sin(Pi/3)); # Evaluate as a floating
# point number.
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> diff(y,x); Differentiate y with
respect to Xx.
> YHsSIYL Set y back equal to y.

> diff(x"3*y"2,x$1,y$2); Partial differentiation.

Integration with
respect to x.

> int(cos(x),x);

> int(x/(x"3-1),x=0..1); Definite integrals.

= i H# = * £

> int(l/x,x=1..infinity) ; Improper integrals.

> convert(l/((s+l)*(s+2)),parfrac,s);

# Split into partial
# fractions.

> expand(sin (x+y)); # Expansion.

> factor(x"2-y"2); # Factorization.

> limit ((cos(x)-1)/x,x=0); # The limit as x goes
# to zero.

> 2z1:=3+2*1;22:=2-1I; # Complex numbers. Use
# I NOT 1i.

> z3:=2z1+22;

> zd:=21*%22/2z3;

> modzl:=abs(zl); # Modulus of a complex
# number.

> evalc(exp(I*zl)); # Evaluate as a complex
# number.

> solve ({x+2*y=1,x-y=3},{x,v}); # Solve two simultaneous
# equations.

> fsolve(x*cos(x)=0,x=7..9); # Find a root in a given
# interval.

> S:=sum(i”2,i=1..n); # A finite sum.

> ?linalg # Open a help page.

> with(linalg): # Load the linear
# algebra package.

> A:=matrix([[1,2],1(3,41]); # Defining 2 by 2

> B:=matrix([[1,0],[-1,311); # matrices.

> evalm(B” (-1)); # Matrix inverse.

> C:=evalm(A+2*B) ; # Evaluate the new



AB:=evalm(A &* B);

0. A Tutorial Introduction to Maple

# matrix.

# Matrix multiplication.

Al:=matrix([[1,0,4],[0,2,0]1,(3,1,-311);

det (Al) ;

eigenvals (Al) ;

?eigenvects

eigenvects (Al) ;

#

The determinant.

Gives the eigenvalues
of Al.

Shows how the eigen-
vectors are displayed.

Gives the eigenvectors
of Al.

# Use of the help browser - one option.

?interp

>??interp

>???interp

>

# End of Tutorial One.

Open a help page for
interpolation.

List the syntax for
this command.

List some examples.

Exit the Maple worksheet by clicking on the File and Exit buttons, but remember
to save your work.

0.2 Tutorial Two: Plots and Differential Equations

(One Hour)

There is no need to copy the comments, they are there to help you.

Click on the Maple icon and copy the command after the > prompt.

Maple Commands

>

>

?plot
with(plots):

plot(cos(2*x) ,x=0..4*Pi);

plot (x* (x"2-1) ,x=-3..3,y=-10.

title=‘A cubic polynomial‘);

.10,

Comments

#
#
#
#

#
#

Open a help page.

Load the plots package.

Plot a trigonometric
function.

Plot a cubic polynomial

and add a title.

plot(tan(x) ,x=-2*Pi..2*Pi,y=-10..10,
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>

V V.V VYV

vV V V V

vV Vv

Plot a function with
discontinuities.

Plot two curves on one
graph.

discont=true) ; #

#
plot ({x*cos (x) ,x-2},x=-5..5); #

#
cl:=plot(sin(x),x=-2*Pi..2*Pi,
linestyle=1):
c2:=plot(2*sin(2*x-Pi/2),x=-2*Pi..2*Pi,
linestyle=3):
display({cl,c2});

points:=[[n,sin(n)]l$n=1..10]: #
pointplot (points, style=point, #
symbol=circle) ; #
pointplot (points, style=1line) ;

implicitplot(y"2+y=x"3-x,x=-2..3,
y=-3..3); #

animate (sin(x*t),x=-4*Pi..4*Pi, t=0..

color=red) ; #

Plot points and lines
joining the points on
two separate graphs.

Implicit plots.

1;
2-D animation.

plot3d(sin(x) *exp(-y) ,x=0..Pi,y=0..3,

axes=boxed) ;

H* 3 H H*

cylinderplot (z+3*cos(2*theta),
theta=0..Pi,z=0..3);

> animate3d(t*y"2/2-x"2/2+x"4/4,x=-2.

> dsolve(diff (x(t),t$2)+8*diff (x(t),t)

y=-2..2,t=0..2);
?DEtools

with (DEtools):

dsolve(diff (y(x),x)=x,y(x));

B B = =

dsolve ({diff(v(t),t)+2*t=0,v(1)=5},
v(t)); #
#

+25*x(t)=0,x(t)); #
#

dsolve(diff (x(t),t$2)+8*diff (x(t),t)

+25*x (t)=t*exp(t) ,x(t));

3-D plots. You can
rotate the figure
with the left mouse
button.

-2,

3-D animation.
Open a help page.

Load the differential
equations package.

Solve a differential
equation.

Solve an initial value
problem.

Solve second-order
differential equations.



