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Preface

Coding theory began in the late 1940’s with the work of Golay, Hamming
and Shannon. Although it has its origins in an engineering problem, the
subject has developed by using more and more sophisticated mathematical
techniques. It is our goal to present the theory of error-correcting codes in a
simple, easily understandable manner, and yet also to cover all the important
aspects of the subject. Thus the reader will find both the simpler families of
codes - for example, Hamming, BCH, cyclic and Reed-Muller codes —dis-
cussed in some detail, together with encoding and decoding methods, as well
as more advanced topics such as quadratic residue, Golay, Goppa, alternant,
Kerdock, Preparata, and self-dual codes and association schemes.

Our treatment of bounds on the size of a code is similarly thorough. We
discuss both the simpler results—the sphere-packing, Plotkin, Elias and
Garshamov bounds — as well as the very powerful linear programming method
and the McEliece-Rodemich-Rumsey-Welch bound, the best asymptotic
result known. An appendix gives tables of bounds and of the best codes
presently known of length up to 512.

Having two authors has helped to keep things simple: by the time we both
understand a chapter, it is usually transparent. Therefore this book can be
used both by the beginner and by the expert, as an introductory textbook and
as a reference book, and both by the engineer and the mathematician. Of
course this has not resulted in a thin book, and so we suggest the following
menus: '

An elementary first course on coding theory for mathematicians: Ch. 1, "h.
2 (86 up to Theorem 22), Ch. 3, Ch. 4 (§§1-5), Ch. 5 (to Problem 5), Ch. 7 (not
§§7, 8), Ch. 8 (§§1-3), Ch. 9 (§§1, 4), Ch. 12 (§8), Ch- 13 (§§81-3), Ch. 14
(881-3).

A second course for mathematicians: Ch. 2 (§81-6, 8), Ch. 4 (8§86, 7 and
part of 8), Ch. 5 (to Problem 6, and §§3, 4, 5, 7), Ch. 6 (§§1-3, 10, omitting the
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proof of Theorem 33), Ch. 8 (8§85, 6), Ch. 9 (8§2, 3,5), Ch. 10 (§§1-5, 11), Ch. 11,
Ch. 13 (884, 5,9), Ch. 16 (§§1-6), Ch. 17 (§7, up to Theorem 35), Ch. 19 (§§1-3).

An elementary first course on coding theory for engineers: Ch. 1, Ch. 3,
Ch. 4 (§81-5), Ch. 5 (to Problem 5), Ch. 7 (not §7), Ch. 9 (§81, 4, 6), Ch. 10
(881, 2, S, 6, 7, 10), Ch. 13 (§81-3, 6, 7), Ch. 14 (881, 2, 4). :

A second ceurse for engineers: Ch. 2 (§81-6), Ch. 8 (§§1-3, 5, 6), Ch. 9
(882, 3, 5), Ch. 10 (§11), Ch. 12 (§§1-3, 8, 9), Ch. 16 (§§1, 2, 4, 6, 9), Ch. 17 (§7,
up to Theorem 35).

There is then a lot of rich food left for an advanced course: the rest of
Chapters 2, 6, 11 and 14, followed by Chapters 15, 18, 19, 20 and 21 — a feast!

The following are the principal codes discussed:

Alternant, Ch. 12;

BCH, Ch. 3, §§1, 3; Ch. 7, §6; Ch. 8, §5; Ch. 9; Ch. 21, §8;
Chien-Choy generalized BCH, Ch. 12, §7:
Concatenated, Ch. 10, §11; Ch. 18, §§5. §;
Conference matrix, Ch. 2, §4;

Cyclic, Ch. 7, Ch. 8;

Delsarte-Goethals, Ch. 15, §5;

Difference-set cyclic, Ch. 13, §8;

Double circulant and quasi-cyclic, Ch. 16, §§6-8;
Euclidean and projective geometry, Ch. 13, §8;
Goethals generalized Preparata, Ch. 15, §7;
Golay (binary), Ch. 2, §6; Ch. 16, §2; Ch. 20;
Golay (ternary), Ch. 16, §2; Ch. 20;

Goppa, Ch. 12, §§3-5;

Hadamard, Ch. 2, §3;

Hamming, Ch. 1, §7, Ch. 7, §3 and Problem 8;
Irreducible or minimal cyclic, Ch. 8, §§3, 4;
Justesen, Ch. 10, §11;

Kerdock, Ch. 2, §8; Ch. 15, §5;

Maximal distance separable, Ch. 11;
Nordstrom-Robinson, Ch. 2, §8; Ch. 15, §§5, 6;
Pless symmetry, Ch. 16, §8;

Preparata, Ch. 2, §8; Ch. 15, §6; Ch. 18, §7.3;
Product, Ch. 18, §§2-6;

Quadratic residue, Ch. 16;

Redundant residue, Ch. 10, §9;

Reed-Muller, Ch. 1, §9; Chs. 13-15;
Reed-Solomon, Ch. 10;
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Self-dual, Ch. 19;
Single-error-correcting nonlinear, Ch. 2, §7; Ch. 18, §7.3;
Srivastava, Ch. 12, §6.

Encoding methods are given for:

Linear codes, Ch. 1, §2;

Cyclic codes, Ch. 7, §8;

Reed-Solomon codes, Ch. 10, §7;
Reed-Muller codes, Ch. 13, §86, 7; Ch. 14, §4.

Decoding methods are given for:

Linear codes, Ch. 1, §§3, 4;

Hamming codes, Ch. 1, §7;

BCH codes, Ch. 3, §3; Ch. 9, §6; Ch. 12, §9;

Reed-Solomon codes, Ch. 10, §10;

Alternant (including BCH, Goppa, Srivastava and Chien-Choy generalized
BCH codes) Ch. 12, §9;

Quadratic residue codes, Ch. 16, §9;

Cyclic codes, Ch. 16, §9,

while other decoding methods are mentioned in the notes to Ch. 16.

When reading the book, keep in mind this piece of advice, which should be
given in every preface: if you get stuck on a section, skip it, but keep reading!
Don’t hesitate to skip the proof of a theorem: we often do. Starred sections
are difficult or dull, and can be omitted on the first (or even second) reading.

The book ends with an extensive bibliography. Because coding thecry
overlaps with so many other subjects (computers, digital systems. group
theory, number theory, the design of experiments, etc.) relevant papers may
be found almost anywhere in the scientific literature. Unfortunately this
means that the usual indexing and reviewing journals are not always helpful.
We have therefore felt an obligation to give a fairly comprehensive bi-
bliography. The notes at the ends of the chapters give sources for the
theorems, problems and tables, as well as small bibliographies for some of the
topics covered (or not covered) in the chapter. -

Only block codes for correcting random errors are discussed; we say little
about codes for correcting other kinds of errors (bursts or transpositions) or
about variable length codes, convolutional codes or source codes (see the
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Notes to Ch. 1). Furthermore we have often considered only binary codes,
which makes the theory a lot simpler. Most writers take the opposite point of
view: they think in binary but publish their results over arbitrary fields.

There are a few topics which were included in the original plan for the
book but have been reluctantly omitted for reasons of space:

(i) Gray codes and snake-in-the-box codes-see Adelson et al. [5,6],
Buchner [210], Cavior [253], Chien et al. [290], Cohn [299], Danzer and Klee
[328], Davies [335], Douglas [382,383], Even [413], Flores [432], Gardner
[468], Gilbert [481], Guy [571], Harper [605], Klee [764-767], Mecklenberg et
al. [951], Mills [956], Preparata and Nievergelt [1083], Singleton [1215], Tang
and Liu [1307], Vasil’ev [1367], Wyner [1440] and Yuen [1448, 1449].

(i) Comma-free codes-see Ball and Cummings [60,61], Baumert and
Cantor [85], Crick et al. [316], Eastman [399], Golomb [523, pp. 118-122],
Golomb et al. [528], Hall [587, pp. 11-12], Jiggs [692], Miyakawa and Moriya
[967], Niho [992] and Redinbo and Walcott [1102]. See also the remarks on
codes for synchronizing in the Notes to Ch. 1.

(iii) Codes with unequal error protection-see Gore and Kilgus [549],
Kilgus and Gore [761] and Mandelbaum [901].

(iv) Coding for channels with feedback —see Berlekamp [124], Horstein
[664] and Schalkwijk et al. [1153-1155].

(v) Codes for the Gaussian channel —see Biglieri et al. [148-151], Blake
[155, 156, 158], Blake and Mullin [162], Chadwick et al. [256,257], Gallager
[464], Ingemarsson [683], Landau [791], Ottoson [1017], Shannon [1191],
Slepian [1221-1223] and Zetterberg [1456].

(vi) The complexity of decoding —see Bajoga and Walbesser [59], Chaitin
[257a-258a], Gelfand et al. [471], Groth [564], Justesen [706], Kolmogorov
[774a], Marguinaud [916], Martin-L6f [917a], Pinsker [1046a], Sarwate [1145]
and Savage [1149-1152a].

(vii) The connections between coding theory and the packing of equal
spheres in n-dimensional Euclidean space — see Leech [803-805], [807], Leech
and Sloane [808-810] and Sloane [1226].

The following books and monographs on coding theory are.our predeces-
sors: Berlekamp [113, 116], Blake and Mullin [162], Cameron and Van Lint
[234], Golomb [522], Lin [834], Van Lint [848], Massey [922a], Peterson
[1036a], Peterson and Weldon [1040], Solomon [1251] and Sloane [1227a];
while the following collections contain some of the papers in the bibliography:
Berlekamp [126], Blake [157], the special issues [377a,678,679], Hartnett
[620], Mann [909] and Slepian [1224]. See also the bibliography [1022].

We owe a considerable debt to several friends who read the first draft very
carefully, made numerous corrections and improvements, and frequently
saved us from dreadful blunders. In particular we should like to thank I.F.
Blake, P. Delsarte, J.-M. Goethals, R.L. Graham, J.H. van Lint, G. Longo,
C.L. Mallows, J. McKay, V. Pless, H.O. Pollak, L.D. Rudolph, D.W. Sar-
wate, many other colleagues at Bell Labs, and especially A.M. Odlyzko for
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their help. Not all of their suggestions have been followed, however, and the

-authors are fully responsible for the remaining errors. (This conventional
remark is to be taken seriously.) We should also like to thank all the typists at
Bell Labs who have helped with the book at various times, our $ecretary
Peggy van Ness who has helped in countless ways, and above all Marion
Messersmith who has typed and retyped most of the chapters. Sam Lomonaco
has very kindly helped us check the galley proofs.
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Linear codes

§1. Linear codes

Codes were invented to correct errors on noisy communication channels.
Suppose there is a telegraph wire from Boston to New York down which 0’s
and 1’s can be sent. Usually when a 0 is sent it is received as a 0, but
occasionally a 0 will be received as a 1, or a 1 asa 0. Let’s say that on the
average 1 out of every 100 symbols will be in error. I.e. for each symbol there
is a probability p = 1/100 that the channel will make a mistake. This is called a
binary symmetric channel (Fig. 1.1).

There are a lot of important messages to be sent down this wire, and they

- must be sent as quickly and reliably as possible. The messages are already
written as a string of 0’s and 1’s - perhaps they are being produced by a
computer.

We are going to encode these messages to give them some protection
against errors on the channel. A block of k message symbols u = uu, ... u

>0 4
SEND RECEIVE

4

Fig. 1.1. The binary symmetric channel, with error probability p. In general 0 <p <3.



2 =1 Linear codes Ch. 1. §1.

MESSAGE
e - ENCODER CHANNEL |—»
MESSAGE CODEWORD
Uqlig™ " " Uk X4X2"" " Xp T
NOISE
Fig. 1.2.

(u; = 0 or 1) will be encoded into a codeword x = x,x,...x, (x;=0 or 1) where
n =k (Fig. 1.2); these codewords form a code. ;

The method of encoding we are about to describe produces what is called a
linear code. The first part of the codeword consists of the message itself:

Xi=Ui, X2= Uz ..., Xe= U
followed by n — k check symbols
Fok#ty o oo 5 Xne
The check symbols are chosen so that the codewords satisfy
X

H|""|=Hx"=0, (1)

where the (n — k) X n matrix H is the parity check matrix of the code, given
by ! :
= [A|L.], (2

A is some fixed (n — k) X k matrix of 0’s and 1’s, and

/1.0
In-—k_(o l.._l)

is the (n — k) X (n — k) unit matrix. The arithmetic in Equation (1) is to be
performed modulo 2,i.e.0+1=1,1+1=0, — 1=+ 1. We shall refer to this as
binary arithmetic.

Example. Code # 1. The parity check matrix

|:011 100]
H=(101({010
001 )

110
defines a code with k =3 and n = 6. For this code
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The message u,u,u; is encoded into the codeword x = x,¥,X3X4XsXs, Which
begins with the message itself:

Xy = U, X2= Uz, X3= Us,
followed by three check symbols xsxsx, chosen so that Hx" =0, i.e. so that

X2+X3+x4=0,
T X+ X3+ x5=0, 4)
X]+XZ+X(,=0.

If the message is u =Cl11, then x, =0, x,=1, x;=1, and the check symbols

are °

Xi=—=1-1=1+1=2=0,
x5=—1=], X6=_1=1,

so the codeword is x =011011.

The Equations (4) are called the parity check equations, or simply parity
checks, of the code.

The first parity check equation says that the 2™, 3™ and 4™ symbols of
every codeword must add to 0 modulo 2; i.e. their sum must have even parity
(hence the name!).

Since each of the 3 message symbols u,u,u; is 0 or 1, there are altogether
2* =8 codewords in this code. They are:

000000 011011 110110
001110 100011 111000.
010101 101101

In the general code there are 2* codewords.

As we shall see, code # 1 is capable of correcting a single channel error (in
any one of the six symbols), and using this code reduces the average
probability of error per symbol from p = .01 to .00215 (see Problem 24). This
is achieved at the cost of sending 6 symbols only 3 of which are message
symbols.

We take (1) as our general definition:

Definition. Let H be any binary matrix. The linear code with parity check
matrix H consists of all vectors x such that

Hx"=0.
(where this equation is to be interpreted modulo 2).
It is convenient, but not essential, if H has the form shown in {2) and (3), in

which case the first k symbols in eack codeword are message or information
symbols, and the last n —k are check symbols.



