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Preface

The second edition of CALCULUS AND ANALYTIC GEOMETRY employs
the same approach as the first edition. It is addressed to the average
student at a level of mathematical sophistication that will enable him to
understand the basic concepts of analytic geometry and calculus, to see
their relevance in science and technology, and to appreciate their beauty
and elegance as intellectual creations. Prerequisites are high school
algebra, geometry, and trigonometry.

Set notation and terminology are used in a manner consistent with
our belief that beginning students are often confused by an excessively
concise notation. The language is modern; we employ single letters to
denote functions, we do not speak of a function being continuous or
discontinuous at a point not in its domain, we do not use the terms
“dependent” and “independent’ variables, etc. Although we prefer to
be up-to-date, we do not dwell upon these matters, since we recognize
that usage varies in the mathematical community.

Although e-5 definitions are carefully stated and discussed, manipula-
tions of formal epsilonics are kept to a minimum. Many important theo-
rems are stated and illustrated but not proved; references to proofs are
given. This is consistent with the recommendations of the CUPM (Com-
mittee on the Undergraduate Program in Mathematics). The 1965
Committee Report to the Mathematical Association of America states
that ““it is the level of rigor in the student’s understanding which counts
and not only the rigor of the text or lecture presented to him.”

In this new edition, the first chapter has been rewritten and now con-
tains a short section on sets, a set of axioms for the real number system,
a section on the algebra of functions, and an expanded treatment of
inequalities. In Chap. 6 a treatment of rotation of axes has been in-
cluded and in Chap. 8 a short section on work has been added. Other
sections have been rewritten and some changes in the order of topics
have been incorporated. The material can be covered in three semesters
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or in a shorter course if some topics are omitted. We have resisted the
temptation to include a chapter on linear algebra; we feel that a mini-
mum of two semester hours is required to do justice to this important
subject. As the CUPM report points out, linear algebra is not required
in a first calculus course unless one wishes to give a somewhat sophisti-
cated presentation of multivariate calculus.

Although we do not assume that the student has access to a digital
computer, we include many problems which can be solved by machine
computation and we stress the importance of numerical analysis when-
ever possible.

The problem lists, which have been expanded, constitute an outstand-
ing feature of the book. The importance of success in the learning
process is recognized by starting these lists with many simple, routine
problems. These are followed by problems of moderate difficulty
involving ramifications of the basic theory. The lists conclude with
problems which extend the theory and require considerable ingenuity.
Numerous applications are included in all three of these categories.
The selection of problems is based on the philosophy that the student is
more apt to learn when he is successful, when his interest is
aroused, when he sees the relevance of the subject matter, and when he
is challenged.

Sequences are introduced in Chap. 1 and employed throughout the
text. Chapter 2 develops the analytic geometry of straight lines and
very simple curves. Differential and integral calculus are developed in
Chaps. 3 and 4 and in later chapters the powerful methods of the calculus
are applied to more advanced topics of analytic geometry. Thus the
student is not confronted simultaneously with new concepts of both
disciplines, and yet the two subjects are truly integrated.

Other features include thorough treatments of the function concept,
inverse functions, the two fundamental theorems of calculus, and
vector methods. Logical reasoning is stressed and yet strong reliance is
placed upon geometrical intuition and interpretation. Many illustrative
examples, arranged in order of complexity, are included; applications
to physics, mechanics, chemistry, biology, economics, statistics, engi-
neering, etc. are exploited; and considerable attention is devoted to the
historical development of analytic geometry and calculus.

The author wishes to thank Professor J. H. Carruth of the University
of Tennessee and Professor Erik Hemmingsen of Syracuse University
for their many valuable suggestions.

It is my hope that the readers of this book will find their study of
man’s outstanding intellectual achievement a richly rewarding educa-
tional experience.

Annapolis, Maryland
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Preliminary Concepts

1.1 Introduction

This text presents an integrated treatment of analytic geometry,
differential calculus, and integral calculus. Although it is difficult to
discuss these three subjects before we have made certain intuitive con-
cepts precise, it is nevertheless appropriate that we indicate the scope
and importance of what lies ahead.

The basic problem of the integral calculus involves the calculation of
a quantity @ which can be approximated by the sum of n terms
Q + @+ -+ @, If when the number of addends increases
indefinitely in such a manner that successive addends approach zero, the
sum of the n addends approaches @ in value, we say that @ is the limit of
the sum @, + @, + -+ @,. For example, the circumference of a
circle is defined as the limit, as n increases indefinitely, of the sum of the
lengths of the sides of an inscribed regular polygon of n sides. There are
many other quantities which can be expressed in this manner as the
limit of a sum; @ might be an area, a volume, a mass, a moment of inertia,
the work done by a force, and so forth.

The basic problem of the integral calculus can be interpreted geo-
metrically. In Fig. 1.1, AC and BD are 1 CD, and AB is an arc of a
curve extending from A to B. The basic problem, that of computing the
shaded area @, is known as the problem of quadrature. This problem was
solved in a number of special cases by Archimedes (287?-212 B.c.), the
great mathematician of ancient times.

The French mathematician and philosopher René Descartes (1596-
1650) is generally regarded as the founder of analytic geometry. His
La Géometrie, published in 1637, interpreted algebraic operations
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Figure 1.1 Figure 1.2

geometrically and applied algebraic methods to geometric problems.
This approach furnished a highly powerful method for attacking geo-
metric problems, and, due to the geometric interpretation of algebraic
equations, led to the discovery of many new and interesting curves. (In
Euclidean plane geometry, plane figures are bounded by straight line
segments and arcs of circles.) Analytic geometry employed a coordinate
system and provided the ideal setting for the development of the
differential calculus.

In algebra we are often interested in the relation between two quan-
tities, for example the temperature 7 of a body and the time ¢. In the
differential calculus we are concerned also with the rate at which 7 is
changing with respect to t. In fact, the basic problem of the differential
calculus is to determine the instantaneous rate of change of one quantity
with respect to another. Many important physical laws involve not only
quantities but also their rates of change.

The basic problem of the differential calculus also has a geometric
interpretation. In Fig. 1.2, P is a point on curve C. The basic problem is
to determine the line L tangent to C at P. Clearly, this involves a
generalization of the concept of a line tangent to a circle.

The tangent problem and the quadrature problem are seemingly
unrelated; the first person to perceive their intimate connection was
Isaac Barrow (1630-1677), the teacher of Sir Isaac Newton (1642-1727).
Barrow recognized that the tangent and quadrature problems are
inverse problems, in the same sense that addition and subtraction are
inverse operations.

Newton and Gottfried Wilhelm Leibniz (1646-1716) are regarded as the
founders of calculus. They appreciated and exploited the power and
generality of Barrow’s discovery and solved the quadrature problem by
inverting the tangent problem. They also systematized the calculus into
an organized body of mathematical knowledge. Of the many other men
involved in the early development of our subjects, special mention
should be made of Pierre de Fermat (1601-1665), a brilliant French
mathematician who made many significant contributions to analytic
geometry and to both branches of the calculus.

Although the origins of the calculus lie in the physical sciences, its
modern applications permeate all of science and technology. Calculus is
also the basis of the branch of mathematics known as analysis and is
considered by many to be the outstanding intellectual achievement of
the human race.
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1.2 Sets

A set is a collection of well-defined, distinguishable objects regarded
as a single entity. It is customary to denote a set by a capital letter and
the objects in the set, termed elements of the set, by lowercase letters.
A set is usually denoted by braces; for example, if set S contains elements
a, b, ¢, and d, we write

S ={a,b,c d}
or
= {b,c, a,d}
since the order in which the elements are listed is unimportant.

A set may contain an infinite number of elements. For example, the
set N of positive integers or natural numbers is denoted by

N=1{1,23,...}
where the three dots are read as “‘and so forth.”
Another method of denoting a set S, known as the set-builder notation,
is to write
S = {x: p(x)}
read as “'S is the set of x’s such that p(x) is true,” p(x) referring to some
property which holds for x. For example,

S = {x: x is a positive integer less than 6}
denotes the set S = {1, 2, 3, 4, 5}.
If t is an element of set A, we write t € A, but if ¢ is not an element of

A, we write t ¢ A.
Equality of sets is defined as follows:

DEFINITION: Two sets are equal if and only if they contain the same
elements.

If set A is equal to set B, we write A = B (or B = A), otherwise we
write A # B. If every element of A is also an element of B, we say that
A is contained in B, and we write A < B and call A a subset of B. If
A < B but A # B, there exists at least one element # such that t € A
and t ¢ B. In this case we call A a proper subset of B and we write
A < B.

It is convenient to postulate the existence of a set that contains no
elements. This set is called the empty set and is denoted by .

If all sets under consideration are subsets of a set U, then U is called
the universal ser for that discussion. If U = N is the set of positive
integers and A is the set of positive integers less than 100, we can write

A= {x:xeN and x < 100}
However, it is simpler to write
A = {x:x < 100}
provided it is clear that A is a subset of N.
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Example 1. Let A = {b,c,e,g}and B = {a, b, c, ¢, f, g}. Then,
A # B, A< B, be A, be B, and fEA

Sets can be combined to form new sets in the same fashion that
numbers can be combined to yield other numbers. We define two
operations on sets:

DEFINITION : The union of two sets A and B, written A U B and read
as “A union B,” is the set of all elements which are members of A or

B. In symbols
AUB-=I{xxeA or xeB}

In this definition “x € A or x € B’ means that x is a member of at least
one of A and B.

Example 2. Let A ={1,3,2}, B={6,3,4,2},and C = {7, 8, 9}. Then,
AuB=({1,23,4,6} and AuC=1{1,2231238,9

DEFINITION: The intersection of two sets A and B, written A N B and
read as ““A intersect B,” is the set of all elements which are members
of both A and B. In symbols

AnB-=i{x:xeAandxe B}

Sets A and B are called disjoint if and only if A n B = . That is,
two sets are disjoint if and only if they have no common elements.

Example 3. Let A = {f,d,c, k,r}, B={r,d,c,p},and C = {p, q}. Then,
AnNnB={d,cr} Bn C = {p}, and AnC=yg

The totality of formulas and procedures for combining sets is known
as the algebra of sets. It is similar to but not identical with the familiar
algebra of the real or complex numbers. We now prove one formula,
known as a distributive law, from the algebra of sets.

Example 4. Provethat AU (BN C)=(AuBnNnAuOQ).

Solution:Let M = Au (BnC)and N= (A uB)n(AuQOQ().
(I) Let x€e M. Then,xe Aorxe BN C.Ifxe A,thenxe Au Bandxe A U C,
and hence xe N. If xe BN C, then x€ B and x€ C. Thus, x€ A U B and
x € A v C, and hence x € N.
(II) Let ye N. Then ye Au B and ye Au C. Thus ye A, or ye B and y € C.
Ifye A,thenye M. If ye Band y € C, then y e BN C and hence y € M.

In (I) we showed that every element of M is also an element of N; in (II) we
showed that every element of N is also an element of M. We conclude that M
and N contain the same elements; that is, M = N.

The theory of sets, founded by the German mathematician Georg
Cantor (1845-1918), is an important branch of mathematics and contains
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many deep and intriguing results. For our purposes, set notation and
terminology will be useful in presenting the concepts of analytic
geometry and calculus. Most sets we plan to consider will be subsets of
the set Z of real numbers.

Problem List 1.1

1.

Let A = {a,b,¢,d,¢}, B = {b,c,d},and C = {a, b, c, f}. Which of the following
statements are true?

@ beA (® Bc A
() d¢ B (h) BS A

(© a¢ANnB i) BhC=g
@ feBucC () AUB< A
() de AnC k) AUBc A
) A< B 1) BAACB

. List specifically the elements of each of the following sets:

(@) {x: xis a New England State}.
(b) {x: xis an integer and x2 — x — 6 = 0}.
(¢) {x: xis a vowel in the English alphabet}.

. Let A = {1,2,3,5,8,9). List specifically the elements of the following subsets

of A:

(a) {x: x is odd}

(b) {x: x is even}

(c) {x: x is greater than 4}

. Employ the set-builder notation to denote the following sets. Let N denote the

set of positive integers.

(a) The set of positive integers less than 100

(b) The set of odd positive integers

(c) The set of positive integers which are squares of positive integers

Given A = {a, b, d,f, 8L B=1{a,cd,f},and C = {b, c, d}, find
(a AuB (b) BuC (c) AnB d AnC

. Given A = {a, b, ¢, d, e}, B = {b,c,e,f},and C = {a, b, d, f, g}, verify that

@ AnBUC)=ANBUM@ANC)
b AuBNC)#AUBANC

. If A contains 9 elements, B contains 6 elements, and A N B contains 2

elements, how many elements are there in A U B?

. Prove that ¥ < S for every set S.

9. Prove that if A < Band B < C, then A < C.

10.
11.
12,

13.
14.
15.

Let A and B be subsets of a universal set U. Prove@ < AnNB< AuBc U.
Give an example of a set whose elements are sets.

In what way can the perimeter of a triangle be considered a set whose elements
are sets?

Explain the difference between ¢ and {t}.
Explain why {a, b} ¢ {a, b, {a, ¢}, {a, b, c}}.
Let A, B, and C be subsets of a universal set U. Prove that

(@ AuUB=BuUA @ Ang =g
b)) AnNB=BnNnA ) AnA=A
© AVANB=A 8 AuBUC)=AUBUC
dAvyg =A (h)An(BnC)z(AnB)r\C

1.2 Sets 5



