PERFORMANCE AND
RELIABILITY ANALYSIS
OF COMPUTER
SYSTEMS

An Example-Based Approach
Using the SHARPE Software Package

DISK 1

p,=.667 | Cj
}l{ | 1 =1000/30
| A 90
pflm e
p,=233
1 ;=1000/42.9 Y
Robin A. Sahner
Kishor S. Trivedi
Antonio Puliafito

Kluwer Academic Publishers

PERFORMANCE AND
RELIABILITY ANALYSIS
OF COMPUTER
SYSTEMS

An Example-Based Approach Using
the SHARPE Software Package

Robin SAHNER
Urbana, IL

Kishor S. TRIVEDI
Duke University

Durham, N.C.

Antonio PULIAFITO
Jniversity of Catania

Catania, Italy

AMd KLUWER ACADEMIC PUBLISHERS
"“ Boston/London/Dordrecht

Distributors for North America:
Kluwer Academic Publishers

101 Philip Drive

Assinippi Park

Norwell, Massachusetts 02061 USA

Distributors for all other countries:
Kluwer Academic Publishers Group
Distribution Centre

Post Office Box 322

3300 AH Dordrecht, THE NETHERLANDS

Library of Congress Cataloging-in-Publication Data

Sahner, Robin 1953-

Performance and reliability analysis of computer systems : an
example-based approach using the SHARPE software package / Robin
Sahner, Kishor S. Trivedi, Antonio Puliafito.

p. cm.

Includes bibliographical references and index.

ISBN 0-7923-9650-2

1. Electronic digital computers--Evaluation. 2. SHARPE.

I. Trivedi, Kishor Shridharbhai, 1946- . II. Puliafito, Antonio,

1965- . III Title.

QA76.9.E94.823 1996

004.2'4’01135133--dc20 95-38798
CIp

Copyright © 1996 by Kluwer Academic Publishers . Fourth Printing 2002.

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system or transmitted in any form or by any means, mechanical,
photocopying, recording, or otherwise, without the prior written permission of
the publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park,
Norwell, Massachusetts 02061

Printed on acid-free paper.

Printed in Great Britain by IBT Global, London

This printing is a digital duplication of the original edition.

PERFORMANCE AND
RELIABILITY ANALYSIS OF

COMPUTER SYSTEMS

An Example-Based Approach Using
the SHARPE Software Package

PREFACE

Assessment of performance, reliability and availability is a key step in the de-
sign, analysis and tuning of computer systems. Suppose we have a multiproces-
sor system and we want to be sure it provides enough processing power. If we
add a processor, how much better will performance get? Could additional over-
head make the performance worse? Could we get a performance improvement
just by changing the scheduling of jobs? How would adding a processor affect
the reliability of the system. Would this make the system go down more often?
If so, would an increase in performance outweigh the decrease in reliability?

Determining what questions to ask and what measures will address them in-
volves examining the goals and requirements set out by system users. Perfor-
mance requirements might be focused more on system throughput, on response
time, or on meeting deadlines. That is, is it more important that a certain
number of jobs or transactions can be processed per unit time, or that indi-
vidual jobs can expect a certain average response time, or that all jobs are
guaranteed a certain maximum response time? Reliability and availability re-
quirements might be focused on measures like average system downtime, the
likelihood that a system will stay up for a given amount of time or the mean
time to system failure.

The relative importance of performance and reliability requirements will differ
depending on the system environment and typical usage. Sometimes perfor-
mance and reliability issues can be addressed separately, but sometimes their
interaction demands a measure that combines aspects of both. For example,
it might be required that once started, a system must get a certain amount of
work before it goes down, but it does not matter how fast the work gets done
or how long the system stays up.

Having decided what measures are needed, a system designer has several options
when it comes to predicting their values:

® Make an educated guess based on experience with previous, similar sys-
tems.

X PERFORMANCE AND RELIABILITY OF COMPUTER SYSTEMS

m Build one or more systems (or prototypes) and take measurements.

Use discrete-event simulation to model the system.

m Construct analytic models of the system.

These options are not exclusive; a system designer may very well use two or
more of them, depending on the stage of the design process, the nature and
rigidity of the system requirements, and the time and resources available. Each
option brings something to the design process.

Discrete-event simulation and analytic models both allow designers to predict
system behavior without having to build and measure a system. A discrete-
event simulation is essentially a program whose execution mimics the dynamic
behavior of the modeled system and provides measures of the behavior. An an-
alytic model is essentially a set of formulas or equations describing the system;
manipulating or solving the equations leads to results that describe the system
behavior. In simple cases, equations can be solved to get a closed-form answer
but more often a numerical solution of the equations needs to be carried out.

Discrete-event simulation models can capture system behavior in however much
detail the modeler desires. Their drawback is that they can take quite a long
time to run. Since the use of models typically involves changing the param-
eters many times, this can be a real concern. Analytic models are generally
more of an abstraction of the system than a discrete-event simulation model,
which means that the results might not be good predictors of system behavior.
Modelers must be very careful to choose good abstractions, and take care in
parameterizing the models and validating them. But once an analytic model
is set up it is easy and fast to carry out trade-off studies, answer “what if”
questions, perform sensitivity analyses and compare design alternatives.

There are circumstances when analytic models can provide information not eas-
ily obtained by any other method. It might be too expensive or time-consuming
to build even one actual system unless we were sure it was going to meet the
system requirements. It is also sometimes impossible to assure ourselves by
measurement that a system satisfies the design criteria. This could be the case
if we were trying to build a system so reliable that waiting for it to fail enough
times to accurately estimate its reliability would take years. But, if we knew
the reliability characteristics of the components and had a model that captured
the structural relationships between the components, we make a mathcmatical
prediction of the system reliability.

Preface Xi

A system designer has a wide range of kinds of analytical models to choose from.
Each model has its strengths and weaknesses in terms of accessibility, ease of
construction, efficiency and accuracy of solution algorithms, and availability of
software tools. No single kind of model is best, or even necessarily appropriate,
for every system and every measure of interest.

Reliability models like fault trees are straightforward and easy to understand,
and solution methods have been studied extensively. But they cannot easily
represent non-independent behavior of components and are not easily general-
ized to incorporate performance considerations. Markov chains provide great
flexibility for modeling reliability, performance, and combined reliability and
performance (performability) measures. But they are not always intuitive and
the size of their state space grows much faster than the number of system com-
ponents, making model specification and analysis difficult. Queueing networks
are extremely intuitive, and those that have product-form have efficient solu-
tion methods, but they cannot represent systems where there is simultaneous
possession of resources.

A modeler who is familiar with many different kinds of models, can easily
choose models that best suit a particular system and the kind of measure that
is needed at each stage of the design. It is also possible to use different kinds
of models hierarchically for different physical or abstract levels of the system
and to use different kinds of models to validate each other’s results.

The purpose of this book is to provide a theoretical summary and examples of
a variety of probabilistic, discrete-state models typically used to assess the reli-

ability and performance of computer and communication systems. The models
we have included are:

® combinatorial reliability models: reliability block diagrams, fault trees and
reliability graphs;

= directed, acyclic task precedence graphs;
® Markov and semi-Markov models, including Markov reward models;
= product-form queueing networks;

® generalized stochastic Petri nets.

This book is suitable for three different types of users. It could be used as a
text for a senior undergraduate or first year graduate course in several possible

xii PERFORMANCE AND RELIABILITY OF COMPUTER SYSTEMS

departments: electrical engineering, computer science, industrial engineering,
or applied mathematics. The following graph shows the chapters that could be
covered for courses in reliability engineering and performance evaluation.

2 6 - 9
177 347 27287 n—i2z=z13
A 3 P Y 5 . \10/
— Reliability engineering
---% Performance evaluation

The book could be used as a supplementary text in a course on fault-tolerant
computing or a course on computer architecture. It is also suitable for self-
study by practicing engineers and can be used by researchers who need to know
about models of system performance and reliability. A two semester sequence in
calculus and an introduction to probability are sufficient background for most
of the material in this book. Some of the material related to Markov chain
analysis requires basic knowledge about linear algebra, differential equations
and Laplace transforms.

Access to the software tool SHARPE, (Symbolic Hierarchical Automated Re-
liability and Performance Evaluator), will be extremely useful, if not essen-
tial. The book should be especially useful to current and potential users of

SHARPE. To obtain a copy of the software, please contact the second author,
Kishor Trivedi.

There are many other software tools that provide support for model specifica-
tion and analysis (45, 48]. Most of the available tools support a single model
type and many of them are tailored to a specific application domain or pro-
vide only limited user choice when it comes to the model characteristics and
parameters.

We believe that SHARPE is a useful modeler’s “toolchest” because it contains
support for multiple model types and provides flexible mechanisms for combin-
ing results so that models can be used in hierarchical combinations. SHARPE
allows its users to construct and analyze performance, reliability, availability
and performability models. It gives users direct and complete access to the
models without making any assumptions about an application domain.

Preface Xiil

This book is divided into two parts, with theory in Part I and examples in Part
II. Part I begins in Chapter 1 by reviewing random variables and their distribu-
tion functions. Chapter 2 concentrates on reliability and availability modeling.
It introduces formal definitions of reliability and availability, then describes
reliability block diagram, fault tree and reliability graph models with worked-
out examples of each. Chapter 3 turns to performance modeling, presenting
a series-parallel, directed acyclic graph model. Chapter 4 discusses stochastic
processes in general, and Markov chains in particular, with examples showing
how these can be used to model either reliability or performance. Chapter 5
returns to performance modeling with a discussion and examples of product-
form queueing networks. In Chapter 6, Markov reward models are presented
as a way to combine performance and reliability measures into a performability
measure. Chapter 7 discusses stochastic Petri net models. Chapter 8 presents
semi-Markov models.

Part II consists of a large number of model examples. Chapter 9 presents
reliability models, including reliability block diagrams, fault trees, reliability
graphs, Markov chains, and stochastic Petri nets. Chapter 10 presents perfor-
mance models, including acyclic series-parallel graphs, Markov chains, queueing
networks, and stochastic Petri nets. In Chapter 11, we show how hierarchical,
sometimes heterogeneous models can be used to model a system that does not
lend itself to analysis by a single model. Chapter 12 contains Markov reward
model examples. In Chapter 13, we discuss numerical problems that come up
during model analysis and ways of dealing with or avoiding them.

All of the examples in Part II are analyzed using SHARPE. Each feature of
SHARPE is explained the first time it is used and sometimes again in later
examples, because we expect that readers may not look at the examples in
order. Appendix B contains the complete SHARPE language description; you
can look there if you read the examples out of order and need to know what a
particular construct means.

There is more than one way to read this book. It can be read straight through.
Some readers might want to alternate between Parts I and II; it makes sense
to follow the reading of a chapter in Part I that describes a particular kind of
model with the chapter or sections in Part II that contains examples of that
kind of model. It would also be reasonable for some people to start reading
with Part IT and refer back to Part I as needed for background material on the
model types.

The authors thank Phil Chimento, Varsha Mainkar, Jogesh Muppala, Herve
Tardif, Roger Smith and Malathi Veeraraghavan for contributing to the devel-

xiv. PERFORMANCE AND RELIABILITY OF COMPUTER SYSTEMS

opment of the SHARPE program. We also thank Ashutosh Aggarwal, Gian-
franco Ciardo, Sachin Garg, Dimitris Logothetis, Steve Hunter, Ajay Kshem-
kalyani, Varsha Mainkar, Jogesh Muppala, Bruce Reznick, Andrew Rindos, W.
Earl Smith, and Steve Woolet for reading and commenting on various drafts.

CONTENTS

PREFACE

Part1 MODELING THEORY

1

DISTRIBUTION FUNCTIONS

1.1
1.2
13
14
1.5
1.6
1.7
1.8

Basic Definitions

The Exponential Distribution

Operations on Random Variables

Exponential Polynomial Distributions

Mixture Distributions

EP and Other Classes of Distributions

Approximating non-EP Distributions with EP Distributions
Operations on Exponential Polynomials

RELIABILITY AND AVAILABILITY
MODELS

2.1
2.2
2.3
2.4
2.5
2.6

Reliability

Availability

Series-Parallel Reliability Block Diagrams
Fault Trees

Reliability Graphs

Analysis of Network Reliability Models

SERIES-PARALLEL ACYCLIC DIRECTED
GRAPHS

3.1

A Simple Task Graph Example

1x

o

10
17
18
21
22
23

27
27
30
35
39
42
45

47
48

vi

PERFORMANCE AND RELIABILITY OF COMPUTER SYSTEMS

3.2

3.3
3.4

Running Example: Performance from a Program’s Point of
View

Definition of a Series-Parallel Acyclic Directed Graph Model
Series-Parallel Acyclic Directed Graph Analysis

MARKOV MODELS

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Stochastic Processes

Markov Chains

Basic Equations

Classification of States and Chains
Examples of Markov Chain Analysis
Steady-state Solution Techniques
Transient Analysis Methods
Examples

PRODUCT-FORM QUEUEING NETWORKS

5.1
5.2
5.3

Queueing Terminology
Queueing Network Analysis
Examples

PERFORMABILITY MODELS

6.1
6.2
6.3
6.4
6.5
6.6

Introduction

Degradable Systems

Largeness and stiffness: the decomposition approach
The Markov Reward Model

Measures of interest

Reward Assignment and Reward Computation

STOCHASTIC PETRI NET MODELS

7.1
7.2
7.3
7.4
7.5
7.6

Introduction to Petri Net Models

Petri Net Model Definitions

Petri Net Extensions

SPN and GSPN Analysis

GSPN EXAMPLES

Non-Markovian SPN Model Extensions

49
50
53

55
55
57
58
61
63
72
73
80

85
85
89
100

103
104
106
108
109
110
116

119
120
123
126
133
137
141

Contents

SEMI-MARKOV CHAINS

8.1 Describing Semi-Markov chains

8.2 Analysis of Irreducible Semi-Markov Chains

8.3 A Semi-Symbolic Analysis for Acyclic Semi-Markov Chains

Part II MODELING EXAMPLES

9

10

11

12

RELIABILITY AND AVAILABILITY
MODELING

9.1 Modeling with Block Diagrams

9.2 Modeling Reliability and Availability with Fault Trees
9.3 Modeling With A Reliability Graph

9.4 Modeling Using Markov Chains

9.5 Ring Network Reliability Models

PERFORMANCE MODELING

10.1 Program Performance Analysis Using Task Graphs
10.2 System Performance Analysis

HIERARCHICAL MODELS

11.1 A Non-Series-Parallel Block Diagram

11.2 A Non-Series-Parallel Task Precedence Graph

11.3 A Task Graph Containing a Cycle

11.4 A Queueing Model with Resource Constraints

11.5 A Queueing Model with Simultaneous Resource Possession
11.6 A Queueing Model with Job Priorities

11.7 Parallel Processing of Task Systems with Resource Con-
straints

11.8 A Queue Subject to Failure and Repair
11.9 Modeling Repair Dependence
11.10 Intermittent and Near-coincident Faults

PERFORMABILITY MODELS
12.1 An Acyclic Markov Reward Model

12.2 An Irreducible Markov Reward Model
12.3 A Hierarchical Markov Reward Model

vii

143
143
145
147

151

155
155
172
180
183
193

203
204
222

261
262
271
274
277
280
284

288
294
295
301

313
313
318
320

viii PERFORMANCE AND RELIABILITY OF COMPUTER SYSTEMS

12.4 A Multiprocessor Performability Model 324

13 HANDLING ALGORITHMIC AND

NUMERICAL LIMITATIONS 329
13.1 Distributions with Very Large Coefficients 330
13.2 A Phase-type Markov Chain 334
13.3 An Irreducible Markov Chain 337
13.4 An Example Where the Order of States Matters 339
Part II APPENDICES 343
A SHARPE COMMAND LINE SYNTAX 345
B SHARPE LANGUAGE DESCRIPTION 347
B.1 Conventions 347
B.2 Basic Language Components 347
B.3 Specification of Exponential Polynomial Functions 352
B.4 Specification of Models 354
B.5 Asking for Results 367
B.6 Built-in Functions 371
B.7 Controlling the Analysis Process 375
B.8 Program Constants 377
B.9 Summary of Top-level Input Statements 378
C USING SHARPE INTERACTIVELY 381
ALGORITHM CHOICES FOR PHASE-TYPE
MARKOV CHAINS 387
REFERENCES 389

INDEX 401

PART 1

MODELING THEORY

Part I focuses on the theory of analytical modeling. We present the basic

concepts and terminology for each modeling technique, explain how the models
are analyzed, and give examples.

To help compare and contrast the model types, the examples will include a
running example in which the various modeling techniques are used to model
different facets of the same system. The system for this running example con-
sists of a fault-tolerant, multiprocessor computer with multiple memory mod-
ules. We assume that the system is able to detect a processor or memory
module failure and reconfigure itself to continue operation without the failed
component. Two system design alternatives will be considered, one where all
memory modules are shared by all processors, and one where each processor
has a private memory module and there are also shared memory modules.

= In Section 2.3, we use a reliability block diagram to model system reliability
for the all-shared-memory-module case.

s In Section 2.4, we present fault tree models for both design alternatives.

® In Section 2.5, we validate the fault tree model for the second design with
an equivalent reliability graph model.

= In Section 3.2, we turn from reliability to performance modeling and use
an acyclic graph model to analyze the execution time of a parallel program
running on systems using both design alternatives.

® In Section 4.8.2, we add the assumption that components that have failed
can be repaired and use Markov models to analyze system availability.

= In Section 5.3.1, we show how queueing models can be used to analyze
system performance for both design alternatives.

® In Section 6.2, we present Markov reward models for the performability
analysis of the system.

m In Section 7.5, we show how a stochastic Petri net model can be used to
validate and extend one of the Markov models from Section 4.8.2.

