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Introduction

This book is a collection of papers on automatic target recognition (ATR) technology

that were presented at the 12th conference on Automatic Target Recognition (ATRXII),
held in April 2002.

The goal of this conference is, and has been for the past 12 years, to provide an
unrestricted medium for presentations and discussions of ATR-related issues. As
evidenced by the success of these yearly meetings, the interest in ATR technology, both

in its methodologies and specific applications, has been on a steady rise for the past
decade.

With the rapid introduction of the unmanned aerial vehicles (UAV) and the more
advanced avionics onboard of manned air platforms, the need for ATR systems has
become more urgent than ever before. This urgency has also created a need for new
methodologies to use new sensory outputs in faster and more adaptive ways. The
papers contained in these conference proceedings reflect the most current trends and
represent the latest ongoing research and development in the field.

| thank the conference committee members, session chairs, authors, and other

participants who once again by their efforts and their enthusiasm made this year's
meeting a fun and educational gathering for all of us.

Firooz Sadjadi
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Generalization of Group Velocity and Group Acceleration

LEON COHEN!
City University of New York, 695 Park Ave. New York, NY 10021 USA

Group velocity is typically defined as the derivative of the dispersion relation. However, we show that
definition is not appropriate in general and is only applicable to wave equations with constant coefficients.
We generalize the concept of group velocity and also show that in general one also has group acceleration.
Explicit expressions are derived and examples are given.

1. INTRODUCTION
The classical method for solving a wave equation with constant coefficients,

N "y M oy
Za"'ét_n = ,,g,.'-t"x_’" (1)

n=0

is to substitute e’**~** into it to obtain a relation between k and w,

N M
D an(=iw)* = Y bm(ik)™ (2)
n=0 m==0
One then solves for w in terms of k to obtain the dispersion relation
w = W(k) 3)

and typically there will be more than one solution. Each solution to Eq. (3) is called a mode and the solution
to the wave equation for each mode is [5, 8],

1 o
u(z,t) = —— [ S(k) =Wkt g 4
@t) = —= [ 5t @
where S(k) is the initial spatial spectrum which is obtained from the initial pulse by way of
1 .
S(k) = — [ u(z,0) e ** dz 5
()= 7= [umoe 5)
From the dispersion relation one obtains the group velocity defined by
dW (k)
k)= ——F
vk = S (6)

Group velocity is interpreted in a variety of ways and we will discuss this at length in subsequent sections. But
we emphasize here that while indeed vy (k) is called the gromp velocity in the literature, in the opinion of the
author, it is not an discriptive terminology for what it represents becouse it is definitely not the velocity of a
pulse or wave packet. As we will see in the next section the velocity of a group of waves is the average of the
group velocity.

Examples of wave equations with constant coefficients are many, the classical wave equation

18% 0% -

e 7

c? 92 o ™
!'Work supported by the Air Force Information Institute Research Program (Rome, NY) and the NSA HBCU/MI program.
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being the best known and studied. The dispersion relation and group velocity are respectively
w = *ck vg(k) = £c (8)

which shows that all wave numbers travel with the same velocity and therefore there is no dispersion. Another
example is the beam equation(7, 8],

102 o
292 - o )

and one has
w = +ck? vg(k) = +2ck (10)

However, what do we do if the wave equation has variable coefficients? For example suppose we consider

ot _ o '
c2(z) o2~ 9z? (1)

where ¢(z) is position dependent, what is the group velocity then? Or, consider the general string equation|7]
Pu 9 Ju
@)%z = 52 [T(l’)a] (12)

where £(z) and T'(z) are position dependent density and tension. What is the group velocity? Another, example
is the Schrodinger equation

L Ry _

lﬁa = Tom o2 + V(z)y (13)
where V/(z) is the potential, and the same question may be asked. More generally what is the meaning of group
velocity for wave equations of the form

2 'y & Mu
Zan(t)W =Y bm(z) 5= (14)

n=0 m=0

Our aim is to address this question.

2. WHAT IS GROUP VELOCITY?

In discussions of group velocity a statement such as this is typically made: group velocity is the velocity
with which a pulse propagates, and, arguments are then made to make Eq. (3) plausible. Typically, these
arguments are made independent of any particular wave equation and the implication is that the arguments
apply in general. We will argue that it is not the case that group velocity is the velocity with which a pulse
propagates. In fact the velocity with which a pulse propagates will be seen to be the average of the group
velocity, where the averaging is done with the initial spectrum and therefore the velocity of the pulse for a given
group velocity varies dramatically with the initial spectrum! Second, we will argue that the concept of group
velocity as usually discussed applies to pulses governed by linear differential equations with constant coefficients
although sometimes it does apply in other situations. We first examine exact results for equations with constant
coefficients and that will lead us to a way to generalize the concepts.

Proc. SPIE Vol. 4726



Motion of a pulse governed by wave equations with constant coefficients

It is a remarkable fact that for any wave equation with constant coefficients the velocity of the center of
mass moves with a constant velocity. Explicitly, suppose we have an initial pulse u(z,0) and we evolve it using

any equation of the form given by Eq. (1) to obtain u(z,t). We then ask for the center of mass motion for a
node defined by

()= /1:|u(:r,t)|2d:z: (15)
One can show that, exactly, (4]
(z)e=(z)o+ Vit (16)
where
V= /vg(k) |S(k)|? dk (17)

and where S(k) is the initial spatial spectrum which obtained from the initial pulse,
1 3
S(k) = — [ u(z,0) e **dz 18
()= 7= [uw0)e (18)

We emphasize that Eq. (15) is exact and applies to any wave equation with constant coefficients. We see
that the velocity of the pulse is the average of the group velocity, the averaging being done with |S(k)[> and
therefore the velocity of the center of mass varies dramatically because we can choose |S(k)?> at will. In
addition we emphasize that there are no higher terms, that is, there is no acceleration! Why is it that vg(k) is
sometimes called the group velocity? The reason is as follows. In many derivations that appear in the literature
a narrowband pulse is assumed and that can be thought of as a pulse with a spectrum that is very peaked at

some value of k say ko. Then indeed V' ~ v4(ko), as can be seen from Eq. (15). However we emphasize that no
such approximation is needed as Eq. (17) is exact.

3. APPROACH
It is our aim to generalize the concept of group velocity for wave equations with non-constant coefficients.

The approach we will take is as follows. From the wave equation we will obtain the center of mass motion. The
center of mass motion will not in general be of constant velocity but nontheless one will be able to expand it in

terms of a Taylor series,
1 2
(z)e=(z)o+ VO)+ 7a(0)e*--- (19)
From the derivation we will be able to see how the velocity, V(0), depends on wave numbers or other
physical quantities and therefore we will be able to define group velocity for the general case. Also, it will allow

us to define group acceleration. The approach we will take is the one developed in quantum mechanics for the
Schrodinger equation but we will be dealing with a general linear wave equation with non-constant coefficients.

Mathematical Preliminaries and Notation

We define the time dependent spatial spectrum, S(k,t), by

S(k,t) = ﬁ / u(z,t) e ** dr (20)
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u(z,t) = \/% / S(k,t) e** dk

The position operator is denoted by X" and in the k representation it is

7]
X=1—
ok
Also, the wave number operator is denoted by K and in the z representation it is
a
K=-i—
oz

In general the moments of a pulse are defined by

(2" ) = /I" |u(z, t))? dx

and they can be calculated from the spectrum by way of

(z"), = /S‘(k, t) X" S(k, t) dk

(22)

(23)

(24)

(25)

This of course is nothing more than the momentum representation as usually defined in quantum mechanics.
We will need certain commutation relations between position and wave number. The basic commutation

relation is 2

(X, K] =1
Other important relations that we will need are [1, 6, 3]

[x™, K] = inxm!

[X,K"] = inK™!
Also for any function of z, f(z), we have
K™, f@)] =) ( ) )) Kt

=1

Functions of Operators

(26)

(27)

(28)

(29)

Suppose we have a Hermitian operator H (X', K) made up of the operators X and K. Since it is Hermitian

the eigenvalue problem
H(X,K)u,(z) = yu,(z)

produces a complete set of functions that satisfy

Il

/u;,(x)uw(x)dx

/u;,(xl)u—,(r)d'y

2Commutators will be denoted by the usual notation, [A, B] = AB — BA.

o(y—+")

Il

o(z — ')
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Of particular interest is the construction of functions of operators. For a function F(z) one can construct the
operator F(H(X,K)) by replacing = with H(X,K). The operator F(H(X,K)) has the same eigenfunctions as
H(X,K) but with eigenvalue F(vy). That is,

F(HYuy(z) = F(7)uy () (33)

An arbitrary operator can be written in the following explicit form

H(X,K) = / / (@) (1, + &)= Kayds! (34)
and also,
FH@K) = [ [ Foyus@n 6o+ 206 drs (35)

These are useful forms because one can write an arbitrary operator explicitly in terms of the position and wave
number operators. (4]

4. SOLUTION TO THE WAVE EQUATION

We consider wave equations of the form

N M
Z "u Z amu
n=0 a"(t) atn - m=0 bm(z)aI—m (36)

Our aim is to obtain a symbolic solution to Eq. (36) and then calculate the expectation value of position to
pick out the velocity term. We write the wave equation as
T(t)u = H(z)u (37)

with?
N an M om
TM)=) anlt)gm  H@ =) bnl@)y— (38)
n=0 m=0

Following the usual seperation of variables procedure we write

u= A(t)B(zx) (39)
to obtain

T(t)A _ H(z)B

Y =Y (40)
which results in two eigenvalue equations
T(t)A,(t) = vA,(t) (41)
H(z)B,(z) = vB,(z) (42)

3We assume both T and H are Hermitian and assume that the operators have the properties needed to manipulate as we do.
In a future publication we will consider the mathematical issues involved.
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We assume that the eigenvalues are continuous; the discrete case can be obtained by a simple rewriting of the

equations obtained. Very often the eigenvalue will be a function of parameters, say,  and £ and in those cases
we write

T(t)An(t) = a(n) A, (t) (43)
H(z)Be(z) = B(£)Be(z) (44)

and for this situation we must have that
a(n) = B(¢) =~ (45)

We now show that the solution, u(z,t), can be written as
u(z,t) = Ay (t)u(z,0) (46)
where Ay (t) means that we have substituted the operator H for . First, we point out that symbolically
T(t)An(t) = HAu(t) (47)

To show that Eq. (46) is correct, operate on both sides with T'(¢)

T(t)u(z,t) = T(t)Ag(t)u(z,0) (48)
= HAg (t)u(z,0) (49)
= Hu(z,t) (50)

which is the governing wave equation, Eq. (37).
Now consider the expectation value of position

(2h = [ehuizold (51)
— [ Atz O) 2An Ou(z,0) da (52)
= /u‘(z,O)X(t)u(z,O)dz (53)

where we have defined the time dependent position operator by
X(t) = AY(t, H)X(0)An (t) (54)

and where Al is the Hermitian adjoint. We expand X(t) as a power series up to the second order in ¢. We have

ax(0)  9AY(0,H) ; A0, H)
e — X(O)A(O,H)+A(O,B)X(0)T (55)
P2X(0)  9A*(0,H) fen dA%(0, H) .
= 5 XV(OAW0, H) + A1(0, )X (0)—7— (56)
AN (0, H) A0, H) _
H— X(0) 5 (57)

and therefore

X(t) = X(0) + V(0)t + %a(O)tz ...... (58)

with
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At (0, H) JdA(0,H)

V(0) = =5 —X(0)A(0, H) + A'(0, 8)X(0)—5,—
t
a(0) = a——-—A+;§° 1) x(0) a0, 1) + 4" 0, B)X(0)8A2(0 H) 524 g;’H )X(0)8‘4(§t' H)

Special case 1

Of particular interest is the equation of the form

i%-——Hu

with

H(z) = me(z) 5 = Zz"‘b (63 5

m=0

Solving the eigenvalue problem

T(0A4,(0) = -2 Ay (6) = 7A4(0)
gives
Ay(t) =e™
and therefore
u(z,t) = Ag(t)u(z,0) = e *Hty(z, 0)
Now, as for the quantum case we have that [1, 6]

X(t) — eitHXe—itH
[o o] 1 t n
:"X:%H[X’ H), <;) ,
t 1 t\?
= X+, H)S + (X, H), H) (:)

Therefore the velocity and acceleration operators are

v(0)
a(0)

—i[X, H]
—[l%, H], H]

4For notational simplicity when we write X we shall mean X’ (0).
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