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SorDELLO TO TEXTBOOKS

ORDELLO, a 13th-century Italian troubadour, born
at Goito (¢. 1200), who is praised by Dante in the De
vulgari elogquentia, and in the Purgatorio is made the
type of patriotic pride. He is the hero of a well-known
poem by Robert Browning. The real Sordello was the

most famous of the Italian troubadours. About 1220 he appeared
at Florence in a tavern brawl; and in 1226, while at the court
of Richard of Bonifazio at Verona, he abducted his master’s
wife, Cunizza, at the instigation of her brother, Ezzelino da Ro-
mano. The scandal resulted in his flight (1229) to Provence,
where he seems to have been for some
time. He entered the service of Charles
of Anjou, and probably accompanied him
(12635) on his Naples expedition; in 1266
he was a prisoner in Naples. The last
documentary mention of him is in 1269,
and he is supposed to have died in Pro-
vence. His didactic poem, L’Ensenhamen
d’onor, and his love songs and satirical
pieces have little in common with Dante’s
presentation, but the invective against
negligent princes which” Dante puts into
his mouth in the 7th canto of the Purga-
torio is more adequately paralleled in his
Serventese (1237) on the death of his pa-
tron Blacatz, where he invites all Christian
princes to feed on the heart of the hero.

SORDINO, Sorpont, SORDUN, musical
terms somewhat promiscuously applied (1)
to contrivances for damping or muting
wind, string and percussion instruments
(Sordini); (2) to a family of obsolete
wind instruments resembling the bassoon,
blown by means of a double reed (Sordoni
or Sordun); (3) to a stringed instrument.
To these is added the Surdellina or Sordel-
lina, a kind of musette invented (see BAG-
PIPE) in Naples in the 17th century.

SOREL, AGNES (c. 1422-1450), SorpiNO, AN OBSOLETE

mistress of Charles VII of France, was STRING INSTRUMENT

BY COURTESY OF MESSRS. HOOPER
AND JACKSON

born of the lesser nobility at Fromenteau in Touraine. She was
attached to the service of Isabella of Lorraine, wife of René of
Anjou, then to that of the queen of France, Mary of Anjou. From
1444 she was the acknowledged mistress of the king, the first to
hold that semi-official position.- Her ascendancy dated from the
festivals at Nancy in 1444, the first brilliant court of Charles VII.
Charles’s gift to her of the castle of Beauté-sur-Marne led to her
being nicknamed “Reine de Beauté.” Her death from dysentery,
shortly after the birth of her fourth child in 1450, was attributed,
apparently without foundation, to poison.

See G. du Fresne de Beaucourt, Histoire de Charles V1I, vol. iii
(Paris, 1881—91) ; P. Champion, Agnés Sorel, la dame de Beauté (Paris,

1931).

SOREL, ALBERT (1842-1906), French historian, was
born at Honfleur on Aug. 13, 1842. He was of a characteristically
Norman type and remained all his life a lover of his native
province. He studied law in Paris and entered the foreign office
(1866). In 1870 he was chosen as secretary by M. de Chaudordy,
who had been sent to Tours as a delegate in charge of the diplo-
matic side of the problem of national defense; in these affairs he
proved himself a most valuable collaborator. After the war of
1870-71, when Boutmy founded the Ecole libre des sciences
politiques, Sorel was appointed to teach diplomatic history
(1872), a post in which he achieved great success.

Some of Sorel’s courses have formed books: Le Traité de Paris
du 20 novembre 1815 (1873) ; Histoire diplomatique de la guerre
franco-allemande (1875) ; also the Précis du droit des gens which
he published (1877) in collaboration with his colleague Théodore
Funck-Brentano. In 1875 Sorel left the foreign office and became
general secretary of the Présidence du sénat.

His duties left him sufficient leisure for the great work of his life,
L’Europe et lo révolution frangaise (8 vols., 1885-1904). His
object was to do over again the work already done by Sybel, but
from a less restricted point of view and with a clearer and more
calm understanding of the chessboard of Europe. He spent almost
30 years in the preparation of this history; the analysis of the
documents, mostly unpublished, on French diplomacy during the
first years of the Revolution, which he published in the Revue
historiqgue (vol. v—vii, xi—xiii), shows with what scrupulous care
he read the innumerable dispatches which passed under his notice.
Sorel was elected a member of the Académie frangaise (1894).
He died in Paris on June 29, 1906.
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Sorel’s other works include: La Question d’Orient au XVIII®
siécle, les origines de la triple alliance (1878) ; Montesquieu (1887)
and Mme. de Staél (1891) in the Grands écrivains series; Bona-
parte et Hoche en 1797 (1896) and Recueil des instructions don-
nées aux ambassadeurs, vol. i only (1884). Most of his essays and
articles contributed to various reviews and to the Temps have
been collected.

SOREL, CHARLES, SiEur bpE Souvicny (1602-1674),
French writer, author of Histoire comique de Francion (1623), a
picaresque novel of the road in Burgundy and Paris, remarkable
chiefly for its sense of life and vigour of language, which went
through 30 editions before the end of the century. He also wrote
Le Berger extravagant (1627), Polyandre (1648) and many
shorter satires and scholarly and religious works, including one
of the first histories of French literature, La Bibliothéque
Frangoise (1664).

Sorel was born in Paris. Guy Patin in his letters described
him as a fat little man with a sharp nose, leading a quiet bachelor’s
life with his sister, planning more works than his health would
allow him to write. His chief glory is to have inspired more than
one scene of Moliére. He died on March 7, 1674.

BisLiogrRAPHY —Biography by E. Roy (1891); Francion, ed. by E.
Roy, 3 vol. (1928) ; G. Reynier, Le Roman réaliste au 17° siécle (1914).

(W. G. ME.)

SORGHUM, a cereal, forage and sirup crop plant grown in
many countries and known botanically as Sorghum wulgare.
Sorghum probably originated in Africa. The types grown for
grain (grain sorghum) are called
by various names, including
durra, Egyptian corn, great mil-
let or Indian millet. On the sub-
continent of India it is known
as jowar, cholum or jonna, and
in the West Indies as petit mil or
Guinea corn. In China and Man-
churia it is called kaoliang. It
is a strong grass, growing to a
height of from 2 to 8 ft. or even
16 ft. The stalks and leaves are
coated with a white waxy bloom.
The pith in the stalks of different  }
varieties may be juicy or rather _ §
dry. The juice may be sweet or
nonsweet. The leaves are sheath-
ing, solitary and about 2 in. broad
and 23 ft. in length; the panicles
or flower clusters are loose, con-
tracted or dense. Self-pollina-
tion of the flowers is common but
considerable cross-pollination oc-
curs. The grains may be either
free or retained in the hulls after
threshing. Many varieties are awned. The seeds are ellipsoid,
rounded or flattened and of varied sizes somewhat smaller than
wheat grains. The seeds may be white, yellow, red or brown. The
hulls are mostly straw-coloured, red, brown or black.

Sorghum is the leading cereal grain in Africa and is important
also in the United States, India, Pakistan, north China and Man-
churia. It is grown to some extent in the U.S.S.R., Iran, Arabia,
Argentina, Australia and southern Europe, as well as in other re-
gions. It is best adapted to warm conditions and is very resistant
to drought and heat. Hundreds of varieties are grown. The grain
is similar in composition to that of maize except in being higher
in protein and lower in fat. It replaces maize as a feed grain in
hot, dry regions. For food it usually is ground into a meal and
made into porridge, bread or cakes. Natives of south Africa
refer to the product as “mealies.” Whole grains sometimes are
popped or puffed. The grain also is used in making starch, dex-
trose, paste and alcoholic beverages. The stalks provide fodder
and building materials. The sweet sorghums (sorgos) are grown
chiefly in the United States and south Africa for forage or for
sirup manufacture. The sweet stalks are chewed by peoples of

W, H. HOD

SORGHUM (S. VULGARE)

various countries. The broomcorn plant, belonging also to the
species S. vulgare, is similar to other sorghums in adaptation and
many plant characteristics. (J.H. Mn~.)

SORIA, a province of Spain, formed in 1833 out of OId
Castile. Pop. (1950 census) 164,575; area, 3,977 sq.mi. Soria is a
bleak region, bounded on three sides by mountains. A range of
sierras culminating in the peaks of Urbion (7,310 ft.) and Cebol-
lera (7,026 ft.) on the north and the great Sierra del Moncayo
(7,588 ft.) on the east separate the valley of the Duero (Douro)
from the Ebro. Almost the whole of the province belongs to the
region watered by the Duero and its affluents. There are forests
of pine, oak and beech and large tracts of pasture land. The cli-
mate is cold and dry, and the scenery austere.

SORIA, the capital of the Spanish province of Soria; on the
Duero (Douro) river. Pop. (1950) 16,328. The churches of
Santa Domingo and San Nicolas, the collegiate church of San
Pedro, the cloisters of the convent of San Juan and several other
ecclesiastical buildings are fine specimens of Romanesque work
of the 12th and 13th centuries. Near the Duero are the ruins of
the old citadel, and the 13th century walls remain.

SORIANO, a department in southwest Uruguay bordering on
the Uruguay river. Area 3,414 sq.mi. Pop. (1954 est.) 110.939.
Wheat, flax, corn, barley are grown, and poultry, swine and bees
areraised. The northern region of Soriano, a sheep and cattle area,
is famous for its rich pastures. The departmental capital is
Mercedes (g.v.), an agricultural, livestock and communication
centre on the Negro river. Dolores, a port on the San Salvador
river with a population of about 19,000 (1954 est.), becomes
active during the harvest. (M. 1. V.)

SORIN, EDWARD FREDERICK (1814-1893), French-
U.S. Roman Catholic priest, educator, founder and first president
of the University of Notre Dame, was born at Ahuillé. near Laval,
France, on Feb. 6, 1814. Ordained priest in 1838, he joined in
1840 the Congregation of Holy Cross, a group of priests and
brothers organized at Le Mans by Abbé Basil Antoine Moreau.

At the invitation of Bishop Celestine Hailandiére of Vincennes,
Ind., Sorin and six brothers went to Vincennes in 1841, at first
settling at St. Peter’s in Daviess county. In 1842 Hailandiere
offered Sorin land near South Bend, in St. Joseph county, where
Father Stephen Theodore Badin had formerly conducted the mis-
sion Sainte Marie des Lacs. Sorin arrived there on Nov. 26. and
in 1844 he obtained from the general assembly of Indiana a charter
for the University of Notre Dame. He was president of the
university until 1865, was provincial superior of his community in
the United States until 1868, and was from then until his death,
on Oct. 31, 1893, the superior general.

In 1843 Sorin established at Bertrand, Mich., near Notre Dame,
a community of French Sisters of Holy Cross, and in 1854 secured
for them the site adjacent to Notre Dame on which St. Mary’s
college was founded. He was instrumental in bringing to the
Sisters of Holy Cross Mother Angela (Eliza Maria Gillespie),
who guided the community for nearly 30 years. In 1865 Sorin
began publishing Ave Maria magazine. (T. T. McA.)

SORITES. In traditional logic (see Locic), a chain of suc-
cessive categorical syllogisms in the first figure may be so related
that the conclusion of each except the last is the minor premiss of
the next. If then the intermediate conclusions are suppressed, so
that there are stated only the two premisses of the first syllogism,
the major premisses of the remaining syllogisms, and the final
conclusion, the resulting argument is a valid inference from the
stated premisses, which may be considered independently of its
analysis into syllogisms, and which is called a sorites. The dis-
tinction between the so-called Aristotelian sorites and the
Goclenian sorites (Rudolph Goclenius, 1598) concerns only the
order in which the premisses are stated. (Ao. C.)

SOROCA, a town of the Moldavian S.S.R., USSR, on the
right bank of the Dniester, 81 mi. N.N.W. of Kishinev. Corn,
wool, fruit, wine and cattle are exported. Soroca was the old
Genoese colony of Olchiona and still has the ruins of a 13th-cen-
tury Genoese castle, The Moldavians erected a fortress in the
15th century.

Soroca changed hands many times between Poland, Russia and
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Turkey; in 1940 Rumania ceded it to the U.S.S.R. but regained it
the next year. After 1944 it was in the Moldavian Soviet Social-
ist Republic. ,

SOROLLA Y BASTIDA, JOAQUIN (1863-1923), Span-
ish painter, whose style was a conservative variant of Impression-
ism, was born at Valencia on Feb. 27, 1863, and studied at the
academy there, in Italy and in Paris, where he especially interested
himself in the works of J. Bastien-Lepage and A. von Menzel; he
was also influenced by the north European realists, particularly
A. Zorn. His early paintings were of history and social realism
(one of the latter kind, “Otra Margarita,” 1892, being his earliest
success), but he later became well known for brightly lit scenes
with Valencian peasants and fisherfolk and children playing in the
surf, his style after about 19o3—04 becoming impressionistic and
summary, with heavily impasted pigments. Between 1910 and
1920 he painted portraits of Spanish writers and a ‘“Panorama of
the Forty-nine Provinces of Spain” for the Hispanic Society of
America. Sorolla died in Madrid on Aug. 10, 1923.

SORORATE. This term was introduced by Sir James Frazer
to designate all marriages with a wife’s sister, whether in the
lifetime of the first wife or after her death. In his view, gen-
erally accepted today, it is complementary to the custom of the
levirate (g.v.). The concept already appears in E. B. Tylor’s
“On a Method of Investigating the Development of Institutiens,”
where levirate and sororate correctly figure as correlates of the
postulate that matrimony is a bond between families rather than
individuals. A. R. Radcliffe-Brown subsumes both institutions
under the principle of the social equivalence of brothers and sisters,
respectively. These relationship terms are to be understood in a
classificatory sense, i.e., a more remote relative of the same sex
may serve as secondary mate instead of a blood sibling. Though
related in principle, the levirate and sororate are not invariably
associated, but they usually are, and appear to be the commonest
of preferential secondary marriages. Either may be permissive
rather than obligatory. The Maricopa (Arizona) insist on a
widow’s marrying a husband’s relative, whereas the replacement
of a deceased wife by a kinswoman of hers is customary, but not
compulsory.

Though successive and simultaneous marriage of two or more
sisters falls under the same principle, some tribes, e.g., the Kazak,
favour one, while tabooing the other practice. Hence it has be-
come necessary to distinguish between sororal polygyny and
sororate. The typical rule for the former is that the husband of
the eldest girl in a family marries her juniors as they come of age;
L. H. Morgan found this usage in at least 40 North American
tribes; and even recently Navaho men often were simultaneously
married to two sisters, occasionally to three. Australian aborigines
recognized the same pre-emptive claim, but in many tribes the
husband contented himself with the two oldest girls, conveying
his claims on their younger sisters to his junior brother. With
remarkable unanimity aborigines explain sororal polygyny on the
ground that sisters are unlikely to quarrel as cowives.

The effect of both the sororate and sororal polygyny is to have
children extend the term “mother” to the maternal aunt, but this
terminological trait is more probably directly correlated with uni-
linear descent.

See also- MARRIAGE.

BisriograrEY.—A. R. Radcliffe Brown, The Social Organisation of
Awustralian Tribes (1931); R. H. Lowie, Social Organization (1948);
George P. Murdock, Social Structure (1949). (R. H. Lo))

SORORITY, a social, professional or honorary organization
of women, usually a secret society whose name consists of a series
of Greek letters and which is connected with a college or univer-
sity. See FRATERNITY AND SORORITY.

SORREL, the common name applied to varicus species of
Rumex (family Polygonaceae), especially to R. acetosa, the garden
sorrel; R. acetosella, sheep sorrel; R. paucifolius, mountain sor-
rel; and R. hastatulus, heartwing sorrel. The leaves of garden
sorrel are used in soups, salads and sauces and as a potherb.
French sorrel, R. scutatus, is a hardy perennial, distributed
throughout Europe, but not native in Great Britain.

The spécies of the genus Oxalis (g.v.), (family Oxalidaceae);

are commonly called wood sorrel or lady’s sorrel, and the sour-
wood (Oxydendrum arboreum) of the heath family is known as
the sorrel tree. It is an attractive deciduous tree, native to the
southeastern United States; its leaves turn a brilliant scarlet in the
autumn. (J. M. BL.)

SORRENTO, a city of Campania, Italy (ancient Surrentum).
Pop. (1957 est.) 11,399 (commune).. Sorrento stands on cliffs
about 160 ft. high, between the Bay of Naples and the Bay of
Salerno. It is a summer and winter resort, its northerly aspect
rendering it comparatively cool.

At Sorrento, Bernardo Tasso wrote his romantic poem Amadigi.
His son, the poet Torquato Tasso (1544—95) was born there.

The most important temples of the ancient city were those of
Athena and of the Sirens, the latter the only one in nge Greek world
in historic times. The place was famous for its wine, its fish and
its red Campanian vases. It was protected by deep gorges, except
for a distance of 3oo yd. on the southwest, defended by walls, the
line of which is followed by those of the modern town. The ar-
rangement of the modern streets also preserves that of the ancient
town.

On the east the most important ancient ruin is the reservoir of
the subterranean aqueducts, which had 27 chambers. There are
also remains of villas, including that of Pollius Felix, the friend
of Statius.

SORSOGON, the name of a municipality, provincial capital
and the southernmost province of Luzon, Philippines. Area of
province 793 sq.mi.; pop. (1960) 348,708. The province is bor-
dered on the south by San Bernardino strait and comprises largely
volcanic cones with broad rich level areas between; the highest
peak is Mt. Bulusan (5,118 ft.), a recently active cone. Rainfall
varies from 100 in. to more than 160 in. with no dry season and
maximum fall in the winter.

Rice, sweet potatoes and cassava are the main food crops pro-
duced, but the province is best known as an abaca (Manila hemp)
centre. Before World War II slightly over 409 of the cultivated
area was devoted to abaca, but by the early 1960s this area was
halved. Coconuts continue to occupy a significant proportion of
the farmed area.

Sorsogon (1960 pop. 35,548) is a trading town, processing sta-
tion for abacd and copra; and port on the northeastern shore of
Sorsogon bay. (R. E. He.)

SOSIGENES, Greek astronomer and mathematician, prob-
ably of Alexandria, flourished in the 1st century B.c. According
to Pliny’s Natural History, he was employed by Julius Caesar
in the reform of the Roman calendar (46 B.c.), and wrote three
treatises. From another passage of Pliny it is inferred that
Sosigenes maintained the doctrine of the motion of Mercury
around the sun, which is referred to by Cicero and was also held
by the Egyptians.

Sosigenes was the tutor of Alexander of Aphrodisias. He wrote
Revolving Spheres, from which important extracts are preserved
in Simplicius’ commentary on Aristotle’s De caelo.

SOSITHEUS (c. 280 B.c.), Greek tragic poet, of Alexandria
Troas, a member of the Alexandrian “pleiad.” He must have
resided at some time in Athens, since Diogenes Laértius tells us
(vii, 5, 4) that he attacked the Stoic Cleanthes on the stage and
was hissed - off by the audience. Suidas calls him a Syracusan.
According to an epigram of Dioscorides in the Greek anthology
(Anth. Pal, vii, 707) he restored the satyric drama in its original
form. Part of his pastoral play, Daphnis or Lityerses, is extant.

See O. Crusius s.v. Lityerses in Roscher’s Lexikon der griechischen
wund romischen Mythologie. The fragment in Nauck’s Tragicorum
graecorum fragmenta apparently contains the beginning of the drama.

SOSNOWIEC, a town of Poland, in Katowice province. Pop.
(1960) 131,600. It owes its importance to its position in the
centre of Dabrowa coal field, near Bedzin, Dabrowa and Katowice.
The towns of this region are almost continuous, extending from
Kielce into the provinces of Krakéw and Slask. Sosnowiec is also’
a railway junction. Situated on the Warsaw-Vienna railway, it is a
junction for the Kielce and Radom, Krakéw and Lvov and
Katowice and Breslau lines. Electric power stations were estab-
lished. Iron foundries and textile factories, as well as coal mines,
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employ large numbers of workmen.

Sosnowiec was seized by Germany in World War II and was re-
turned to Poland in 1945.

SOSTENUTO, musical term signifying that the passage so
marked is to be played in a “‘sustained’” manner.

SOTER, SAINT, pope from about 166 to about 175. He
wrote to the church of Corinth and sent it aid. His letter is men-
tioned in the reply given by Dionysius, bishop of €orinth, and A.
Harnack thought that it could be identified with the second so-
called epistle of Clement. St. Soter’s feast day is April 22.

SOTHERN, EDWARD HUGH (1859-1933), U.S. actor,
was born-at New Orleans, La., on Dec. 6, 1859, the son of Edward
Askew Sothern, noted English comedian. His first stage appear-
ance was in a small part with his father’s company at the Park
theatre in New York city in 1879. He toured England in 1882-
83, became leading comedian in John McCullough’s company in
1883, and under Daniel Frohman Was leading man at the Lyceum
theatre in New York city. He married Virginia Harned in 1896,
and in 1899 formed his own company with her as his leading lady.

In 19oo he appeared in the title role of Hamlet, in 19o1 in that
of Richard Lovelace and in 19o2—03 as Villon in /f I Were King,
three of his greatest roles. In 1904 Sothern played opposite Julia
Marlowe (g.v.) for the first time in Romeo and Juliet at Chicago,
Ill. Thereafter, except for two years, 1907-09, they appeared
together on the stage almost continuously until their retirement.
They were married in 1911. Besides Romeo and Juliet they co-
operated in Much Ado About Nothing, Taming of the Shrew,
Merchant of Venice, Twelfth Night, Macbeth, Jeanne D’Arc,
John the Baptist, When Knighthood Was in Flower and The
Sunken Bell. Although noted chiefly as a Shakespearean actor,
Sothern had a repertory of over 125 diverse parts. He won wide
popularity as a dashing, romantic hero in melodramas such as The
Prisoner of Zenda. Sothern wrote an autobiography, The Melan-
choly Tale of Me (1916).

SOTHIC PERIOD, in ancient Egyptian chronology, the pe-
riod in which the year of 365 days circled in succession through
all the seasons. The tropical year, determined as it was in Egypt
by the heliacal rising of Sirius (Sothis), was almost exactly the
Julian year of precisely 3654 days (differing from the true solar
year, which was 11 minutes less than this). The sothic period was
thus 1,461 years. See CALENDAR; EcyPT: History: Ancient Civili-
zation and Culture.

SOTHO, a powerful nation of Bantu-speaking peoples which
inhabits the British colony of Basutoland (g.v.) in South Africa.
It is made up of a large number of different tribes, which were
welded together early in the 1gth century by the great chief
Moshesh.

SOTO, FERDINANDO DE: see DE Soto, HERNANDO OR
FERNANDO,

SOTTO VOCE (It.), lit. “under the voice,” that is, an un-
dertone. Term applied both to rhusic and speech.

SOUBISE, BENJAMIN DE ROHAN, Duc pE (?1589-
1642), Huguenot leader, younger brother of Henri de Rohan, in-
herited his title through his mother Catherine de Parthenay. He
served his apprenticeship as a soldier under Prince Maurice of
Orange-Nassau in the Low Countries. In the religious wars from
1621 onwards his elder brother chiefly commanded on land and
in the south, Soubise in the west and along the sea-coast. Sou-
bise’s chief exploit was a singularly bold and well-conducted
attack (in 1625) on the Royalist fleet in the river Blavet (which
included the cutting of a boom in the face of superior numbers)
and the occupation of Oléron. He commanded at Rochelle during
the famous siege. When surrender became inevitable he fled to
England, which he had previously visited in quest of succour. He
died in 1642 in London.

SOUBISE, CHARLES DE ROHAN (1715-1787), peer
and marshal of France, the grandson of the princesse de Sou-
bise known to history as one of the mistresses of Louis XIV. He
accompanied Louis XV. in the campaign of 1744—48. Soon after
the beginning of the Seven Years’ War, through the influence of
Mme. de Pompadour, he was put in command of a corps of 24,000
men, and was defeated at Rossbach (1757). He continued in the

service until the peace of 1763. He died in Paris on July 4, 1787.

SOUHAM, JOSEPH, Count (1760-1837), French soldier,
was born at Lubersac on April 30, 1760, and became a general of
division in 1793. He was disgraced with Moreau and Pichegru
for alleged participation in the conspiracy of Cadoudal. He
regained his rank in 1809, took a notable part in Gouvion St. Cyr’s
operations in Catalonia, and won the title of count. In 1812
Masséna, in declining the command of Marmont’s army recom-
mended Souham for the post. The latter was thus pitted against
Wellington, and by his skilful manoeuvres regained the ground
lost at Salamanca. At the fall of the First Empire he deserted the
emperor, and was well received by Louis XVIIL., who gave him
high commands. He retired in 1832, and died on April 28, 1837.

V4

SOULOUQUE, FAUSTIN ELIE (1789?-1867), Negro em-
peror of Haiti, was born a slave about 1789 while Haiti was under
French rule. He participated in the successful Haitian revolt
against the French in 1803 and thereafter continued as an officer
in the Haitian army. He was made president of Haiti in 1847 be-
cause the mulatto leaders who had dominated the government un-
der several figurehead Negro presidents thought that his illiteracy
and ignorance would make him easy to control. He soon turned
against his would-be advisers and ruled as a cruel and corrupt
despot, proclaiming himself Emperor Faustin I in 1849 and creat-

‘ing a numerous nobility. Many of the mulatto leaders were killed

or exiled.

Soulouque made several costly and unsuccessful attempts to con-
quer the Dominican Republic, until the United States and France
and Great Britain in 1851 demanded that he desist. He later re-
newed his attacks and in 1855 was defeated by the Dominican
army.

In 1859 he was ousted after.the chief of his general staff, real-

izing that the emperor suspected his loyalty, led a revolt. Sou-
louque escaped and went into exile. He died in 1867.
See also Hatri: History. (D. G. Mo.)

SOULT, NICOLAS JEAN DE DIEU, Duke of Dalmatia
(1769-1851), marshal of France, was born at Saint-Amans-la-
Bastide (now in department of the Tarn) on March 29, 1769,
the son of a notary. He was intended for the bar, but on his
father’s death in 1785 he enlisted as a private in the French in-

‘fantry, and rose rapidly in the army. He laid the foundations of

his military fame by his conduct in Masséna’s great Swiss cam-
paign (1799), and especially at the battle of Ziirich. He acted
as Masséna’s principal lieutenant through the protracted siege
of Genoa, and after many successful actions he was wounded and
taken prisoner at Monte Cretto on April 13, 1800. The victory
of Marengo restoring his freedom, he received the command
of the southern part of the kingdom of Naples, and in 1802 he
was appointed one of the four generals commanding the consular
guard. Despising Napoleon, Soult affected devotion, being ap-
pointed in 1803 to the command at Boulogne and in 1804 to be
one of the first marshals of France. He commanded a corps at
Ulm, and at Austerlitz (g.v.) he led the decisive attack. After
the peace of Tilsit he was created (1808) duke of Dalmatia. In
the following year he was given a command in Spain after the
battle of Gamonal and he pursued Sir John Moore to Corunna.

For the next four years Soult remained in Spain, and his mili-
tary history is that of the Peninsular War (g.v.). In 1812 he
was obliged, after Wellington’s victory of Salamanca, to evacu-
ate Andalusia, and was soon after recalled from Spain at the
request of Joseph Bonaparte, with whom he had always dis-
agreed. In March 1813 he assumed the command of the IV.
corps of the Grande Armée, but he was soon sent to the south
of France to repair the damage done by the defeat of Vittoria.
His campaign there is the finest proof of his genius as a general,
although he was repeatedly defeated by Wellington, for his soldiers
were raw conscripts, facing Wellington’s veterans.

Marshal Soult’s political career was less creditable, and it has
been said of him that he had character only in front of the
enemy. After the first abdication of Napoleon he declared him-
self a Royalist, received the order of St. Louis, and acted as
minister for war (Dec. 3, 1814—March 11, 1815). When Napoleon
returned from Elba Soult declared himself a Bonapartist, was



SOUND 5

made a peer of France and acted as major-general (chief of staff)
to the emperor in the Waterloo campaign.

At the second Restoration he was exiled, but was recalled in
1819 and in 1820 again made a marshal of France and in 1827 a
peer. After the revolution of 1830 he made out that he was a
partisan of Louis Philippe, who revived for him the title of
marshal-general. He was minister for war, 1830-34 and 1840—44,
and ambassador extraordinary to London for the coronation of
Queen Victoria in 1838. In 1848, when Louis Philippe was over-
thrown, Soult again declared himself a republican. He died at
his castle of Soultberg, near his birthplace, on Nov. 26, 1851.
Soult published a memoir justifying his adhesion to Napoleon
during the Hundred Days, and his notes and journals were ar-
ranged by his son Napoleon Hector (1801-57), who published the
first part (Mémoires du maréchal-général Soult) in 1854. Le
Noble’s Mémoires sur les opérations des Frangais en Galicie are
supposed to have been written from Soult papers.

See A. Sallé, Vie politique du maréchal Soult (1834) ; A. de Grozelier,
Le Maréchal Soult (1831); A. Combes, Histoire anecdotique du
maréchal Soult (1869).
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I. WHAT IS SOUND?

When a person opens his mouth and utters speech he is said to
emit sound. Anyone in the vicinity with normal ears (or in de-
fault thereof a suitable hearing aid) is said to hear the sound.
This common experience is a physical phenomenon of the greatest
significance to human beings, who may be considered to be im-
mersed in a world of sound having notable influence on most of
their everyday activities.

The importance of this particular sensation in human life is
reflected in the large number of words descriptive of the different
kinds of sounds which come to our attention. Inanimate nature
produces the thunder of the storm, the roar and pounding of the
surf, the whistling of the wind, the whispering of the trees, the
patter of rain, the rippling and gurgling of running water, the hum-
ming of wires, the creaking of snow. Even more rich is the vo-
cabulary descriptive of the sounds of living things: the barking
and snarling of dogs, mewing of cats, crowing of fowls, roaring
of lions, hissing of snakes, the lowing and bellowing of cattle,
blatting of goats, chirping of birds and insects, screaming of gulls,
crying of infants, etc.

Finally, man, not content with all the racket around him over
which he has little or no control, has contrived to produce sounds
of almost infinite variety causing both pleasure and pain to count-
less millions. The boom of cannon, the crack of the pistol, the
rattle of musketry and machine-gun fire, the whine of the shell and
the blast of its explosion are unpleasantly familiar. The whir of
machinery and the ticking of clocks have more agreeable connota-
tions though they might be distractihg to some people. But the
melody and harmony of music are generally admitted to contribute
aesthetic enjoyment.

What is this sound which forms so large a part of man’s waking
experience? The purpose of this article is to give the physicist’s
answer to this question; it will be shown that there is far more
to sound than “meets the ear” and that the sounds which are not
heard are in some respects the most important ones for modern
physics and its technical applications.

Sound is a physical phenomenon and the branch of physics which
describes it is called acoustics (from the Greek word meaning
“hearing”’). Physics is an abstract science and its method of de-
scription employs mathematical analysis freely. Without such
analysis a physicist considers a deep understanding of a physical
phenomena unattainable. On the other hand, the general reader
understandably prefers to be told the results of scientific descrip-
tion in the language of everyday speech. This article introduces
the subject, therefore, with a general nonmathematical survey of
sound. This is followed by a more analytical account.

1. Motion and Sound.—It is obvious to even the most casual
observer that a thorough analysis of all that is involved in the
emission of any one of the sounds mentioned above must be
complex. To make clear what really goes on, for example, in the
head and larynx when one speaks would undoubtedly require the
combined efforts of a physiologist, a psychologist and a physicist
(with, of course, the aid of a mathematician). Nevertheless, it is
generally agreed that the ultimate result is some motion of the air
in front of the mouth. It is also generally accepted that when
the normal person hears a sound there is some motion of the air
at the entrance to his ear.

A careful examination of all sound-producing phenomena always
shows the existence of motion of some medium. This is rather
satisfying to physicists, who have long sought to explain most
natural phenomena in terms of motion, because they believe they
understand what the latter is. To those whose ideas of motion are
confined to such solid things as automobiles and airplanes, the
association of motion with sound may provide some difficulty.
Realizing that in open, still air it is possible to hear a cricket chirp
at a distance of half a mile, the sceptic asks how it is possible that
such a small insect can move the mass of air in a hemisphere with
a radius of half a mile (over 1,000,000 tons) so that the air in the
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vicinity of one’s ear may move sufficiently to lead to hearing. The
fallacy of this reasoning lies in the assumption that the sound pro-
ducer must move all the surrounding air all at once in order to
produce the sensation of sound. It ignores the fact that air is a
compressible elastic fluid, 7.e., can be squeezed, so that it is possible
for motion to take place in one part without appearing simul-
taneously everywhere else. One of the interesting properties of
such a medium, however, is that if a “‘squeeze” is produced in one
small region, it does not stay, as it were, “frozen” there. Once
squeezed the medium tends to expand again and in so doing com-
presses (z.e., moves) an adjoining portion of the medium, which in
turn repeats the process, with the result that portions of the me-
dium far from the source ultimately get squeezed (of course at a
time later than the original disturbance). This kind of motion,
communicated in time from“one part of a medium ‘to another, is
called wave motion. We say that sound travels in air as a com-
pressional or squeeze wave.

2. Wave Motion; Velocity and Intensity.—The standard
pictorial illustration of wave motion is provided by the ripples
produced on the surface of water when a stone is dropped into it.
One of the striking features of this phenomenon is the fact that the
water itself does not move outward from the centre of the dis-
turbance, whereas the distortion of the surface which constitutes
the ripple does precisely this. The distance traveled by the ripple
per unit time is called the wave velocity. All waves studied by
physicists have a finite wave velocity, although its magnitude
varies greatly from type to type. Thus ripples on the surface of
water may move only a metre or so per second. Light in free
space, on the other hand, travels at the enormous speed of 3 X 10®
m. per second. What can we say of the velocity of sound?

The speed of sound in air incregses (as we shall see later) with
the temperature, but at room temperature it is about 344 m. (1,125
ft.) per second. Its relatively small value compared with that of
light is responsible for the common experience in which the sound
of a distant boat whistle is heard some time after the puff of steam
is seen. S

Not all sound waves travel with the speed of sound in air. Thus
sound in fresh water has a velocity of about 1,508 m. per second
at room temperature. More details on this are presented in the
analytical discussion in section 1I.3 below.

In everyday language we distinguish between loud and soft
sounds. This suggests attention to the magnitude of the motions
of air involved in sound propagation. In normal conversational
speech the pressure of the air in front of the mouth of the speaker
is changed at the most by only about one-millionth of the standard
atmospheric pressure. At the same time the accompanying motion
that produces the compression leads to an air-flow velocity with
a maximum value of only two one-hundredths of a centimetre per
second. That such small changes in the air when reproduced at the
ear cause the sensation of hearing should strengthen respect for
the sensitivity of that sense organ. Since sound involves propa-
gated motion and motion implies energy, we can look upon seund
in air as equivalent to the transmission of mechanical energy
through the air. It then turns out that an average rate of transfer
of only 1071 (1 divided by 10 raised to the 16th power) watt per
square centimetre of acoustic power is sufficient to produce the
sensation of hearing in a normal youthful ear. The average power
transmission in a sound wave per unit area is called its intensity.
The modern unit for this quantity is the decibel (abbreviated to
db.). Strictly this measures the intensity of a sound relative to a
standard intensity. (See section I1.8 below.) For convenience
the latter is often chosen as that corresponding to minimum audi-
bility (maximum excess pressure 2 X 10~* dynes/cm.?). On this
basis the sound of conversational speech has an intensity of about
50 db. at a distance of a few feet and that of traffic at a busy in-
tersection 70 db.; that of a boiler factory can attain the value 110
db.

Everyone has noticed that the farther off he is from a source
of sound in the open, as, for example, an airplane, the less dis-
tinctly he hears it. In technical terms, the intensity of sound in
an unenclosed space decreases with the distance from the source.
This is really merely a matter of geometry. The airplane may be

thought of as emitting the same amount of energy every second in
every direction, but as the distance increases this energy passes
through surfaces of larger and larger area, and hence the average
flow per unit area is diminished. In fact, if the sound disturbance
travels with the same velocity in every direction, it will at any
given instant reach the surface of a sphere with the source at the
centre and with radius equal to the product of the velocity of
sound in the medium and the elapsed time. Hence the intensity
will decrease in the same ratio as the surface of the sphere increases
with its radius; 7.e., with the square of the distance from the source.
(See section 11.g below.) The situation is unfortunately more
complicated for a source of sound on the ground or under water
(near the surface), and even more involved when the source is
enclosed in a room. Nature is rarely simple! And the only way
to begin to understand its ways is to pick rather idealized situa-
tions.

Even the inverse-square law just mentioned does not tell the
whole truth about the change of sound intensity with distance
from the source in an unbounded three-dimensional medium. It is
observed actually that the drop is greater than is predicted by this
law. Why is this? Apparently some of the energy represented by
the sound disturbance gets “lost” in the process of propagation.
We say it is absorbed and changed into heat. This absorption of
sound is particularly noticeable in a viscous liquid like glycerin.
In air it is accentuated by reflection and refraction and scattering
(see sections 1.3 and 1.4 following).

3. Reflection and Refraction of Sound.—If sound is a wave
motion it must manifest other properties of waves besides velocity
and intensity. We know that light waves are reflected from sur-
faces separating media of different properties,.and refracted (i.e.,
bent from the original direction of propagation) in crossing such
surfaces obliquely. There are sound phenomena with precisely
these characteristics. A familiar example is the echo produced
when a loud, sharp sound is emitted near a high wall or cliff. This
is most readily interpreted as caused by the reflection of the origi-
nal sound from the solid surface, verified by the experimental ob-
servation that the time interval elapsing between the initial sound
and the echo is the time taken for the sound to reach the cliff and
the reflected disturbance to return. :

Important also is the concept of acoustic image. Like its opti-
cal counterpart this is an imaginary source of sound which, if it
were located exactly as far behind the reflecting surface as the
initial source is in front of it and if the surface were then removed,
would give the observed echo at the proper time and with the
proper intensity.

It is much easier for a speaker talking with a certain strength
of voice to reach an auditor at a given distance if the two are in a
closed room rather than out in the open air. Curiously enough
this also is an important illustration of the reflection of sound.
For the sound from the speaker reaches the auditor not merely in
the direct line between the two but also by many paths involving
reflection by the walls, floor and ceiling of the room. Consequently
much of the energy which would be dissipated in all directions in
space out of doors is, so to speak, trapped in the room and helps to
build up the sound intensity at every point. In a not-too-large
room the echoes from the various reflecting surfaces merge to form
a continuous sound or reverberation, which lasts longer than the
direct sound and can impair the distinctness of hearing if it is too
long. We then say that the room needs acoustic treatment to cut
down the effect of wall reflection. This is done by the introduction
of suitable sound-absorbing materials (see section V.3 below).

The refraction of sound is less obvious than refraction of light
but produces well-recognized effects. Since sound travels faster in
warm air than cold and since the atmosphere almost always mani-
fests a vertical temperature gradient, it is to be expected that sound
will rarely travel through it in straight lines from the source. Ac-
tuzally it is observed that in the presence of a negative temperature
gradient (the normal condition) the sound rays (the significance
of a ray of sound will be explained fully in section 1.6) are bent
upward and hence the range of hearing in the horizontal direction
is materially reduced. On the other hand when the temperature
gradient is positive, with the temperature increasing upward (so-
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called temperature inversion, a rather infrequent phenomenon in
most localities, but one which occurs occasionally in the early day-
light hours after a clear, wind-free night), the upward-moving
rays tend to be bent downward, assuring longer range of trans-
mission. Just as the refraction of light through air of varying
temperature leads to the phenomenon known as the mirage, so it
is also possible to have acoustic mirages under similar conditions,
and sound may appear to come from a quite different direction
than it would through a homogeneous medium. All these effects
of refraction caused by temperature are further complicated by
refraction caused by the motion of the medium; i.e., winds. It
is well known that sound in air travels better with the wind than
against it, and the effective propagation velocity is materially
changed by vector addition with the wind velocity.

The refraction of sound in air by wind and temperature plays a
very significant and somewhat embarrassing role in gun ranging,
the acoustical method of locating guns by the sounds produced by
their firing (section V.5 below). The reflection and refraction of
sound in water have taken on great practical importance in the
echo-ranging method of detecting underwater objects in which a
beam of sound is projected in water and a portion of it reflected by
a solid object (e.g., a submarine) which it strikes. The detection
of the reflected sound leads to an estimate of range and bearing of
the object being sought after. But refraction or bending of the
sound paths caused by temperature gradients in the water intro-
duces obvious complications (section V.5 below).

4. Diffraction and Scattering.—One of the most striking
properties of sound is its ability to bend around obstacles. It is
because of this that one can hear around a corner. This is an illus-
tration of the characteristic of all waves known as diffraction.
Even light displays it but obviously not to such a pronounced
degree as sound, since we cannot see around a corner (without a
periscope). The reason for this difference is discussed in section
1.5 below.

Diffraction accounts for the inability of objects of ordinary size
to form sharp shadows of audible sound. Here again further dis-
cussion is necessary since not all sounds bend easily around ob-
stacles (section II.14 below).

An iuceresting example of sound diffraction is provided by the
human head. Our hearing of sound is definitely conditioned by
the fact that our ears are imbedded in a roughly spherical, more or
less solid sphere. The ticking of a watch sounds different in front
of the head than it does at the same distanc¢e directly behind. This
is due to diffraction. Theory and experiment alike indicate that
because of diffraction a source of sound produces a greater intensity
at the head if it lies on an extension of the line joining the ears than
if it is at the same distance directly in front of the head. This
effect has significant bearing on the testing of microphones.

When the obstacle diffracting the sound wave is relatively small,
e.g., a fog droplet, the waye is said to be scattered, since the bend-
ing makes the sound turn in all directions from the original one.
Examples of this are presented later, in section IL.14.

5. Harmonic Sound Waves; Pitch, Frequency and Wave
Length.—In the preceding discussion of simple acoustical phe-
nomena, little has been said about one striking difference between
sounds from different sources. This is the difference in pitch. In-
stinctively when we hear two successive sounds we classify one as
higher or lower than the other. This characteristic is obviously
quite different from loudness, previously described in terms of the
intensity of the sound. What physical effect is associated with
pitch? Here it is necessary to invoke actual experiments. For
rough qualitative considerations it will suffice to call attention to
the ordinary air siren, which produces sound by interrupting jets
of air at different rates by means of a rotating disk with orifices in
its periphery (section IIT.1t below). The more rapidly the inter-
ruption takes place, i.e., the greater the number of separate puffs
of air per unit time, the higher the pitch. But a source of sound
in which the disturbance repeats itself regularly like the puffs of
air in the siren is said to produce a harmonic sound wave charac-
terized by a definite frequency. This is defined as the number of
times per second the disturbance in the sound wave at any point
repeats itself.

Actually the relation between pitch and frequency in a compli-
cated sound wave like that associated with the human voice or
ordinary musical instruments is not at all simple. Hence it is
advantageous at this point to confine attention to a pure harmonic
wave like that emitted by a carefully made tuning fork. This is
said to produce a pure tone of definite single frequency.

In a harmonic sound wave in air, then, the “squeeze” responsible
for the sound varies periodically at every point. The time for one
complete cycle of pressure change at any point is called the period
of the wave. The period in seconds is equal to the reciprocal of
the frequency, where the latter is represented by the number of
complete cycles per second.

One of the most important facts about harmonic sound waves is
that we do not hear sounds of all frequencies equally well. If the
hand is waved back and forth periodically with a frequency less
than 15 cycles per second no sound is heard. An object vibrating
above this frequency will produce an audible sensation if the in-
tensity is sufficiently great. However, when the frequency is in-
creased to above 20,000 cycles per second, audibility vanishes for
most people. In fact, with advancing age the frequency threshold
for hearing diminishes decidedly. Of course the sound intensity
plays a role here and the matter is not simple. Nevertheless the
significant thing is that it is possible to have sounds of such high
frequency that they are inaudible no matter how great their
intensity. These sounds are called ultrasonic and they play an im-
portant role in the modern study of acoustics. (See ULTrA-
soNIcs.) As far as the physics of sound is concerned, the sounds
which are not heard attract greater interest than those which are.
One reason is that ultrasonic waves tend to travel in beams like
light, while low-frequency sound waves tend to spread in every
direction from the source. Obviously such sounds need special
devices for their production and detection. Much of the progress
of acoustics after about 1925 was due to the development of such
equipment, which made possible extensive investigations with
sounds of frequencies up to 100,000,000 cycles per second (see
section V.6 below).

To come back to harmonic waves in general, they have another
useful characteristic—the wave length, which is the distance be-
tween successive points in a spreading wave at which the disturb-
ance is exactly the same and doing the same thing (i.e., getting
either larger or smaller), At two such points the phase of the wave
is said to be effectively the same (section II.4 below). Since the
disturbance in a wave travels a distance of one wave length in one
period, the product of wave length and frequency equals the wave
velocity. This important relation is true for waves of all kinds.
It means that high-frequency acoustic waves in a given medium
have smaller wave length than low-frequency sounds. Thus if we
are talking about water, a wave of frequency 1,000 cycles (1 kc.)
has a wave length of approximately 1.5 m., whereas for a frequency
of 1,000,000 cycles (1 mc.) the corresponding wave length is only
1.5 mm.

Many of the properties of sound discussed above are definitely
dependent in their behaviour and magnitude on the frequency.
Very few sounds arising in practice are pure tones characterized by
a single frequency. Most actual sounds insofar as they are periodic
can be considered as more or less complicated combinations of
component harmonic sounds, each of definite frequency. One or
more frequencies will often predominate and help give the sound
its observed quality. In general a high-frequency sound wave is
bent by diffraction less than a low-frequency wave is, and hence
enables an obstacle to cast a sharper acoustic shadow. (There is
a corresponding phenomenon in the case of visible light, where the
frequency is very much higher than that of any sound wave yet
produced.) On the other hand when sound is scattered by objects
whose dimensions are small compared with the wave length, the
high-frequency components are scattered much more effectively
than the low. This is quite analogous to the scattering of sunlight
by the small dust and molecular particles of the atmosphere; the
short wave length or high-frequency light (i.e., the blue) is scat-
tered much more than the long wave length (red) and so the sky
appears blue.

6. Wave Fronts and Rays.—We have already commented on
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the fact that an audible sound wave tends to spread out in all direc-
tions from the source. On the other hand it is possible to produce a
beam of sound if the frequency is high enough. To describe this
situation more precisely the concept of wave front is introduced.
This is a surface of such a kind that at a particular instant the dis-
turbance characterizing the sound wave is the same at every point.

An example is the airplane propeller radiating sound into.the
surrounding air. At any instant of time the state of “squeeze” of
the air in this sound wave will be the same on the surface of a
sphere with centre at the propeller and with radius equal to the
time taken by the squeeze to travel at the speed of sound from the
propeller to the sphere. We shall call this sphere a wave front
of the sound from the propeller and can think of the propagation
of the sound as the motion of such a wave front carrying with it
a definite state of squeeze, and moving with the speed of sound.
The expanding circular ripples on water produced by a dropped
stone form an excellent two-dimensional analogy; in the present
example, however, the wave fronts are spherical. On the other
hand it is possible to confine a sound wave to a tube of constant
cross section, as for example a speaking tube. Though the propa-
gation of the disturbance here is indeed a somewhat complicated
affair because of the reflections from the walls of the tube, it is
approximately correct to assume that at any instant at any place
the squeeze is the same over the plane at that place perpendicular
to the direction of propagation. In other words, the transmission
proceeds by the motion of a plane wave front.

Plane and spherical wave fronts are the most important types en-
countered in sound propagation. Of the two, plane waves are the
more important for at great distances from the source the effective
part of a spherical wave is very nearly plane.

Lines perpendicular to a wave front are known as rays. These
indicate the direction in which the wave front and hence the sound
is moving at any place at any instant. For many purposes it is
more convenient to describe sound transmission in terms of rays
just as in the analogous case of light. However, it must be re-
membered that the wave length of even ultrasound is long com-
pared with that of visible light and consequently ray acoustics is in
general by no means as accurate a representation as ray optics (see
section II.5 below). It is more difficult to produce a beam of
sound than a beam of light, but it can be done if the wave length
is sufficiently small compared with the size of the sound source.
The mechanism by which this takes place is called interference and
is explained in section III.1o below. Such sound beams are very
useful in underwater detection.

II. ANALYSIS OF SOUND PROPAGATION

1. Wave Functions.—It is now necessary to investigate more
carefully the qualitative considerations of the foregoing and intro-
duce some quantitative description. The mathematical treatment
of sound waves in general is very complicated, so we start by
idealizing the problem. It is simplest te begin with the kind of
wave one can produce in a long, perfectly flexible string by flicking
one end. The kink so produced as a disturbance in the original
straight position of the string travels along it in an easily visualized
fashion. (See fig. 1.)

Tlere we have a wave traveling in one direction only. Since
the disturbance is at right angles to the direction of propaga-
tion it is called a transverse wave. In this respect it is different
from a sound wave. In the latter the disturbance, being a pressure
squeeze, is in the same direction
as the wave transmission and the
wave is called longitudinal. *
Each particle of the fluid in this
case is displaced from its equi-
librium position in the direction B
of the wave propagation. How-
ever, the mathematical analysis in
its more fundamental aspects is
the same for both kinds of waves.

If we were to take a snapshot picture of the kinked string at a

iven instant, say ¢ = #,, it might look like A in fig. 1. Here the
disturbance, which is measured by the distance each part of the
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F1G. 1.—TRANSVERSE WAVE IN A
STRING

string has been displaced from its original undisturbed position,
can be represented by a mathematical function f(x), if we denote
distance along the string by x. At the later time, ¢ = #,, the dis-
turbance has moved a distance V(¢; — ¢,) along the string, where
V is the velocity of the wave, so the same funttion f(x) reappears,
but displaced (B in fig. 1). And so likewise for ¢ = £,, as indi-
cated in C. The problem then is to represent mathematically a
function of ¥ which moves along the positive x axis with velocity
V. It turns out that this is

E=fx—V1) (IL.1-1)

The Greek letter £ is used to denote the displacement from equi-
librium representing the disturbance. Moreover, if the wave
travels in the negative x direction the corresponding wave func-
tion, as it is called, is

E=glx+ Vo) (IL.1-2)

It will be noted that there is nothing essentially periodic about
the wave functions (1)! and (2). However, as was stressed in
section 1.5, periodic waves are the most interesting kind, and hence
we proceed at once to specialize the above to waves characterized
by frequency and wave length. The simplest of all periodic waves
is the harmonic, in which (1) takes the form

t = A sin (wt-kx) = — A sin k(x — w/k 1) (I1.1-3)

This is evidently in the proper form for a wave function if we
interpret w/k to be equal to the velocity V. But what are w and
E? If we fix our attention on a particular point x =z, of the string
traversed by such a wave and take a motion picture of the way
the displacement there varies with time we find it is sinusoidal with
period P = 2mw/w or frequency » = w/2w. Hence this fixes the
frequency of the wave. On the other hand, if we take a snapshot
picture of the string at the instant ¢ = ¢, we find that the displace-
ment varies sinusoidally with x and the distance between successive
points of maximum displacement in the same direction is 2w/k.
But we have already defined this as the wave length A of the wave.
Hence we have

v =w/2x,\=2r/k (I1.1-4)

Since w/k = V, we also obtain the important relation already com-
mented on in section I.4 above

A=V (IL.1-5)

This relation holds for any harmonic wave. It is worth noting that
if we used the cosine function in place of the sine function in (3)
the physical meaning would not be altered. The quantity w is often
referred to as the angular frequency of the wave.

2. Differential Equation of Wave Motion and Its Deduc-
tion.—If we differentiate £ in equation (IL.1-3) twice with re-
spect to x (keeping ¢ constant), and then twice with respect to ¢
(keeping x constant) we can show, keeping in mind equation
(I1.1—5), that

7 _
ar

% =
= (II72-1)
As a matter of fact the existence of this equation also follows from
the general wave functions (IL.i-1) and (IL.r-2). It is called
the general differential equation for wave motion in the x direc-
tion. Its general solution is the sum.of wave functions (II.r-1)
and (IL.1-2) representing general waves progressing in both
positive and negative x directions. The advantage of a partial
differential equation like (1) from a physical point of view is
that it contains the description of so much in so compact a form.
The task of theoretical physics in every branch may be said to
be the development of such equations, which by their very gen-
erality include within themselves a vast amount of information
about physical phenomena. The whole theory of the propagation
of sound may be considered to be implied in the above equation
and its generalization to three dimensions (in which any point in

1For simplicity references to equations in the same section are given in terms

of the last digit in the equation number. Reference to an equation in a different
section employs the whole equation number.
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space has the co-ordinates z, ¥, z), viz.,
2
% (24

The physicist therefore feels that he understands something
about the propagation of sound waves if he can show that an equa-
tion like (1) or (2) is a logical consequence of the behaviour of a
compressible fluid when it is squeezed.

The behaviour of an ideal fluid when disturbed from its state
of rest is determined (see MEecHANICS, FLum) by three
fundamental equations: (1) equation of continuity; (2) equa-
tion of motion; and (3) equation of state. The first says that
no matter how the fluid moves, as long as it hangs together as a
continuous fluid there must be conservation of mass. The second,
or equation of motion of the ideal fluid, says that the total time
rate of change of velocity of a particle of fluid must equal the force
per unit mass acting on the particle, the latter for purely compres-
sional disturbances being proportional to the negative of the rate
of change of the excess pressure with distance. Finally the third,
or equation of state, connects the change in pressure with the
change in density. This says that the excess pressure p, produced
by any disturbance in the fluid (i.e., the difference between the
actual pressure and the equilibrium pressure prevailing before the
disturbance) is directly proportional to the excess density p, (i.e.,
the difference between the actual density in the disturbed fluid and
the equilibrium density). The coefficient of proportionality is
usually written as ¢2. It should be noted that this is an idealized
static equation of state and takes no account of the fact that in an
actual fluid the imposition of a given excess pressure needs time
to produce the excess density indicated.

It is an interesting fact that the mathematical combmatlon of
the three equations just described leads to an equation of precisely
the same mathematical form as (1). This should not be too sur-
prising when it is recalled that when a fluid is disturbed mechani-
cally the pressure is bound to change; and this leads to motion of
the fluid as well as a squeezing or rarefying action (viz., change in
density). This must take place in such a way that no mass is lost
(continuity), and if the fluid is truly elastic the squeeze will not
stay put but will inevitably move through the fluid as a wave.
The result of the combination can be expressed most conveniently
in terms of the excess pressure p, and then takes the form

3p./O8 = c*3p./dx*

3’€

62’ (I1.2-2)

(IT.2-3)

which is of precisely the same mathematical form as equation (1)
with p, in place of £ and ¢ in place of V. Physically it therefore
means that the acoustical disturbance represented by the excess
pressure is propagated as a wave along the x axis with velocity c.
Actually it is not difficult to show that the displacement £ and the
excess density p, are propagated in the same way.

It must indeed be emphasized that in the mathematical deduc-
tion leading to (3) it has been assumed that the disturbance is not
too extreme. Specifically this means that the ratio of the excess
density to the equilibrium density (usually called the condensa-
tion) is very small compared with unity.

This also means that the gradient of the particle displacement in
the fluid (i.e., 0¢/0x) is much smaller than unity in magnitude.
Moreover the flow or particle velocity -associated with the dis-
turbance must be very small indeed compared with ¢ (the wave
velocity). These conditions prevail for all acoustic phenomena as-
sociated with speech, sound reproduction and even for most acous-
tic transmission, as in underwater sound signaling, etc. However,
they no longer hold for sounds produced by explosions, or by the
rush of gas in the jet of a jet plane. The same is true for sound
which can cause -cavitation (i.e., the appearance of bubbles) in
liquids (see section V.6 below). High-intensity sound, to which
may be attached the designation macrosonics, is of importance in
the use of sound for processing. Under these conditions the acous-

tic wave equation no longer has the forms (1) or (3). In place
of (1) we now must write
V20%t/0x2
/o = &/ (I.2-4)

(1 + a¢/ax)” 71

in.which the quantity « in the exponent, if the medium is a gas,
is the ratio C,/C,, where C, = specific heat of gas at constant
volume and C, = specific heat of the gas at constant pressure.
The equation can also hold for solid and liquid media, though here
v has a different meaning; in the simplest cases it has the value
unity, but it can have higher values. The solution of (4) is by
no means so simple as that of (1), to which it reduces for 9£/0x
< <1. For v = 1, for example, the solution can be put into the
form

or/ot = flx + & — (V + at/at) 4] (IL.3-5)

where f is an arbitrary function. The physical meaning of this

rather complicated expression is that the various parts of the wave

hump or profile (see fig. 1) do not move forward with the same

velocity. Rather, the top of the hump moves faster than the bot-

tom and hence a disturbance which starts out with a symmetrical

profile as in fig. 2(A) will develop

an asymmetric form as in fig.

/\ A 2(B) in which the front of the

profile will be steeper than the

A B rear. Eventually the front will

Fie. X become vertical and then lean

over so that its top is farther to the right than its bottom. This

state of affairs, however, cannot be of physical significance—in

any actual case the wave “breaks,” as in water waves at the sea-

shore. The only way a macrosonic wave can maintain its profile or

wave form is through some kind of damping mechanism, as, for
example, viscosity (see section IL.18).

3. Velocity of Sound Waves in Fluids.—As was pointed out
in section II.2, the velocity of sound in an ideal fluid is given by
¢ in the expression

¢c= (I1.3-1)

The evaluation of the radical for a liquid follows from the defini-
tion of the bulk modulus

Pc/Pe

-2
B PJ/P

(IT.3-2)
whence

B/p = V1/pK (II.3-3)

where K is the compressibility. Since liquids have a relatively
small compressibility and it changes but little with the density,
it is in general adequate to insert p, (the mean density) for p
in (3).

For gases the situation is rather different.
gas the equation of state takes the form

#/p = RT (IT.3-4)

in which R is the so-called gas constant per unit mass and T is the
absolute temperature. We therefore obtain

pe/pe =RT = p/p (IL.3-5)

if the temperature remains constant. Hence if the compressional
disturbance in the gas takes place isothermally, the velocity has

the form
c=p/r (11.3-6)

This formula was first derived by Newton. It gives, however, a
value definitely smaller than the measured one for the nearly ideal
gases like oxygen and nitrogen. On the other hand, if we assume
that the disturbance constituting the sound takes place adiabati-
cally, we must supplement (4) by

2/p" = po/pa” (IL.3-7)

in which v = C,/C, is the ratio of the specific heat of the gas
at constant pressure to that at constant volume. It follows then
that

Thus for an ideal

¢ =y plp (I1.3-8)

This result agrees so well with experiment that the measurement of
sound velocity became a standard scheme for evaluating <, and
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it is generally assumed that sound disturbances in an ideal fluid
take place adiabatically. It must not be assumed offhand that the
same is true of a viscous fluid, for example, or one displaying con-
ductivity of heat. For liquids (equation [3]) we must take the
adiabatic compressibility in computing ¢, but the difference be-
tween adiabatic and isothermal compressibilities here is generally
small.

For an ideal gas it follows from (4) and (7) that the velocity
of sound is independent of the pressure. On the other hand ¢

does depend on the temperature. In fact
¢ =+VvyRT (I1.3-9)

[f the velocity at o° C. is ¢, that at temperature ¢° C. is clearly .

ce=coV1+1/273 (I1.3-10)

For dry air under standard conditions ¢, = 331.3 m. per second.
This agrees rather well with actual measurements made in the open
air, but it must be remembered that the latter are extremely dif-
ficult to perform precisely since atmospheric conditions are rarely
uniform, and sound transmission in air from the standpoint of
precision is extremely complicated because of nonhomogeneity and
wind disturbances.

For real gases (9) must be modified, since the equation of state
is no longer in the form (4). It is now more convenient to revert
to equation (3). Realizing that the adiabatic bulk modulus must
be used for B, we write Byq = By, and by definition

Bigo = P(BP/aP)T
The expression for the velocity ¢ then becomes
¢ = V~@p/3p)r

For the ideal gas (4), this formula yields (8).
of the equation of state of a real gas is

#/p=RT(1+Bp+Co®+...) (1L.3-13)

The quantities 8 and C are known as the second and third virial
coefficients per gram of gas respectively and are functions of the
temperature. Substituting into (12) yields

¢=/+vRT(L + 28p + 3Cp + .. .) (I1.3-14)

In this form it is clear that the velocity of sound depends on the
pressure as well as the temperature. The effect in air is small ex-
cept at very low temperatures. Thus for air at go.1° K. the
velocity at 1 atm. pressure is about 188 m. per second (A. van
Itterbeek and W. van Doninck, Annales de Physique, 19:88
[1944]), whereas at 0.2 atm. it is 191 m. per second. (Note that
at this temperature 3 is negative.)

The experimental determination of the velocity of sound can be
used as a method of measuring v as well as the virial coefficient .
It is also possible to calculate theoretically the velocity of sound
in a mixture of two gases and then use the formula to determine
the relative concentrations of the components by a sound velocity
measurement. (H. B. Dixon and G. Greenwood, Proc. Roy. Soc.
Lon. (A), 109:561 [1925].)

As might be expected, the velocity of sound is much more sharply
dependent on pressure in the neighbourhood of the critical point.
Thus in carbon dioxide at 31° C., for example, the value of ¢ drops
from about 260 m. per second at 20 atm. pressure to a minimum
of 150 m. per second at 71 atm. and rises again steeply thereafter
to 330 m. per second at go atm.

The formulas so far presented involve no dependence of the
velocify of sound on the frequency. This corresponds to experi-
ence as far as the so-called permanent gases are concerned at
ordinary pressure and low frequencies; they show no dispersion.
However as the frequency-pressure ratio increases all gases ulti-
mately exhibit dispersion, and indeed the velocity is found to in-
crease with increasing v/p. . Thus for hydrogen, ¢ increases about
89, above its low-frequency standard-pressure value of 1,284
m. per second as »/p is raised from 1 mc. per atmosphere to 30 mc.
per atmosphere. The reason for this will be discussed in section
II.13.

The velocity of sound in gases also depends on the purity of the

(IL.3-11)

(I1.3-12)

One useful form
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gas. Small traces of foreign gases can produce significant changes
in ¢. Thus for pure carbon dioxide (with only a trace of neon and
argon) the velocity for »/p = 3.2 X 10* cycles per atmosphere
corresponds to a value of vy in (8) of approximately 1.34. With
the addition of 2.89, water vapour, however, this same value of
<y is associated with »/p = 1.6 X 10% cycles per atmosphere. The
whole dispersion curve is thus displaced. Alternatively put, the
sound velocity at a given v/p value is much decreased by the addi-
tion of the water vapour. The velocity of sound is of course af-
fected by the motion of the medium. Thus in the open air with
the wind blowing the velocity of sound with respect to the ground
will be greater with the wind than against it.

Coming now to the velocity of sound in liquids we can still use
equation (3) but must necessarily employ the adiabatic bulk modu-
lus or compressibility. The change in compressibility of a liquid
with temperature is much more complicated than that of a gas and
it is practically impossible to develop helpful general formulas.
The case of water has been carefully studied and the following
equation (G. W. Willard, J. Acous. Soc. Amer., 19:235 [1947])
represents rather accurately the dependence of sound velocity in
metres per second on temperature in degrees centigrade

6o = 1,557 — 0.0245(74 — 1) (IL.3-15)

This indicates that ¢, increases with temperature up to a maximum
value at ¢ = 74° C., and thereafter decreases. For practically all
other liquids which have been studied ¢ decreases with tempera-
ture over the whole range in which the material can stay liquid.
Salt solutions obey an equation like (15) with different values of
the temperature for maximum ¢;. The case of sea water is of par-
ticular interest because of the importance of underwater sound.
Here matters are complicated by the fact that changes in salinity
and pressure (with depth in the ocean) as well as temperature are
effective in changing velocity. The following empirical formula
(L. E. Kinsler and A. R. Frey, Fundamentals of Acoustics, p. 435
[1950]) holds fairly well over the range of variables usually en-
countered

co=1.41X10°+44.21 X 102 —3.72+1.1 X 1025 4 1.8 X 10~%d (II.3-16)

where ¢ is in degrees centigrade, S is the salinity in parts per 1,000
and d is the depth in centimetres. The velocity is given in centi-
metres per second.

As is suggested by (16), sound velocity in solutions is markedly
dependent on the concentration of the solute. For NaCl, for ex-
ample, the velocity in a 109 solution at room temperature is 1,600
m. per second while for a 209 solution it rises to 1,720 m. per
second. Not all solutions show a rise over the velocity in the pure
solvent, however, and the problem is complicated.

As (16) also indicates, increase in pressure on a liquid raises
the sound velocity more or less linearly. Thus for benzene P.
Biquard found that the velocity is increased by about 17% in go-
ing from atmospheric pressure to 500 atm.

Unlike the situation in gases, no definite indication of sound
dispersion in liquids has been found experimentally, though theo-
retical considerations suggest that it should exist for sufficiently
high frequencies, probably of the order of several hundred mega-
cycles.

y4. Mathematical Representation of Wave Fronts.—In
section 1.6 it was seen that to describe adequately the propagation
of acoustic waves it is necessary to introduce the concept of wave
front as a surface at every point of which at a given instant the
propagated disturbance is the same and doing the same thing (i.e.,
either increasing or decreasing). We now give this analytical pre-
cision, confining our attention to harmonic waves. Previously
(equation II.1-3) we dealt with harmonic wave functions of the
form

£ = A sin (wl — kx)

corresponding to propagation along the positive x axis only. But
we have already pointed out that it is the general tendency for
sound waves in free space to spread in all directions and hence
we must generalize our analysis. To simplify matters, when we
consider wave propagation in three-dimensional space, we shall use
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the excess pressure as the measure of the acoustical disturbance.
Consider the function

pe= A(xv Y 2) sin o[t — v(z, ¥ Z)/Co] (IL.4-1)

in which 4 is the amplitude of the pressure wave and may be a
function of position in space. The function ¢ (x, v, z) is assumed
to have the dimensions of distance only, and ¢, is a constant having
the dimensions of velocity.

It turns out by careful examination that (1) is a genuine har-
monic wave function (z.e., a solution of the general three-dimen-
sional wave equation of the form of [IL.2—2]) under certain
conditions. The phase of the wave, viz., w[t — ¥(z,y, 2)/c,], has
the constant value w?, at the time ¢ over the surface with the equa-
tion

¥(=, ¥, 3) = colt — o) (I1.4-2)

Hence this is the general equation for the wave front at time ¢.
In the passage of time the wave front-equation will alter just as
if the wave front itself were moving through space, carrying with
it the same value of the disturbance.

If

¥(x,y,2) = ax+ By +vz (I1.4-3)

equation (2) represents a plane wave front with the direction
cosines of the normal to the front equal to «, B, v. In this case
A(x,y, z) reduces to a constant.

If

Yz, 9,2 =Va+y+a (I1.4-4)

equation (2) represents a spherical wave front. It develops that
(1) is then a harmonic pressure wave spreading out from the ori-
gin if A(x, v, z) = A,/r, where

r=Vz2+y+a (IL.4-5)

and A4, is constant. Plane and spherical waves are the two most
important types for sound propagation. Both are obviously some-
what idealized; a spherical wave front demands a point source
and there is no such thing as a precise point source of sound. A
plane wave front demands an infinitely extended plane source,
which likewise does not exist. Nevertheless actual wave fronts
often approximate these ideal types sufficiently well to justify their
use. In general the smaller the dimensions of a source compared
with the wave length of the sound the more nearly the wave front
approximates the spherical or hemispherical shape. The larger the
dimensions of a plane source compared with the wave length, the
more nearly is a plane wave front realized.

5. Sound Rays; Refraction.—For many purposes the propa-
gation of light can be effectively studied in terms of rays—curves
which are always perpendicular to the family of wave fronts as-
sociated with a particular propagation. The ray concept is also
useful in acoustics but only if the wave length is sufficiently small
or, more accurately, if the change in wave length (due to change in
velocity from one point to another in the medium) over a distance
of the order of one wave length is very small compared with the
wave length itself.

Moreover, the ray must not bend too rapidly as the sound pro-
gresses. Finally, the change in amplitude over a like distance must
be small compared with the initial amplitude. If these conditions
are satisfied it is meaningful to write the differential equations of
the ray paths in any medium in which the wave velocity ¢ varies
from point to point. Actually, in analogy with optics it is cus-
tomary to define the ratio ¢,y/c as the index of refraction » of the
medium. The physical meaning of ¢, is the nonvarying velocity in
some homogeneous medium bounding the given nonhomogeneous
medium. Let the direction cosines of the ray path be «, 3, 7.
These are in general functions of position, i.e., of the co-ordinates
x,y,z. If dsis the element of distance along the ray, the differen-
tial equations of the ray paths take the form

d(an)/ds = an/ox, d(Bn)/ds = on/dy, d(yn)/ds = on/dz (IL.5-1)

As soon as 7 is known as a function of z, y, z, equations (1) can
be integrated to give the rays. As an illustration, suppose n =

II

constant, so that there is no variation of sound velocity in the
medivm. Equations (1) then lead to

a=K;,B=Kyv=Ks (I1.5-2)

where K, Ko, K3 are constants, giving then the direction cosines
of a straight line. The rays are straight lines, irrespective of the
character of the wave fronts (e.g., the latter may be plane or spheri-
cal).

One typical case of ray propagation occurs when the medium is
stratified; i.e., the change in velocity takes place in one direction
only. Let us take this as the z axis. It will be sufficient to con-
sider the ray path in the xz plane. In fig. 3 let AB be the element
ds of the ray and let the tangents at 4 and B, respectively, make
the angles © and © + d © with the x axis. We now have

on/dx = an/dy = 0,
a=c0s6,8 =0,y =sin®

Equations (1) now yield

d(n cos ©)/ds =0, d(nsin©)/ds = dn/ds (I1.5-3)
The first equation says that along the ray
7 cos © = constant = n; cos 6; (I1.5-4)

where ©, is the direction of the ray at the place where the index
is n;. If we write & = m/2 — ©, where ® is the angle the ray
makes with z, (4) becomes

sin ®/sin ®; = m/n = ¢/a

(IL.5-5)

This has the familiar form of Snell’s law for the refraction of light

rays. Here, however, it is of much more general form since the

R variation of velocity is continu-

ous and does not take place

B abruptly at a boundary plane as

ds in the usual elementary optical

case. The abrupt change in-

volves a discontinuity in n# and

therefore demands special treat-

ment, discussed in section II.7.

0 It is interesting to observe that

Fic. 3 the second equation in (3) makes

possible the evaluation of the curvature (d©/ds) of the ray at any

point and hence ultimately the equation of the ray path. By
straightforward analysis (3) leads to

d0/ds = — dc/dz

As an illustration, suppose

0+de

. cos 61/61 (I.5-6)

c=ac+az (IL.5-7)

i.e., the velocity is a linear function of the depth z (a is a con-
stant), with ¢; = velocity at z = 0, which might, for example,
be the surface of the sea. Then (6) says that the curvature is
constant. This means that the path must be a circle with radius
= |¢y/a cos ©,]. If ais positive, the velocity increases with depth
and the curvature is negative and the path bends upward toward
the surface z = 0. If @ is negative the velocity decreases with
depth (a more common situation in the ocean) and the circular
path bends downward. These results can readily be followed
graphically.

6. Refraction in a Moving Medium.—The progagation of
sound through a moving medium (e.g., the atmosphere with the
wind blowing) is extremely complicated and its analysis will not
be given here. However, the law of refraction for a stratified me-
dium turns out to be a rather simple modification of Snell’s law
(I1.5-5). 1f the velocity of the medium is confined to the x di-
rection only and is equal to #, which is a function of z (e.g., height
above the ground, taken as the xy plane, in the case of transmission
through the atmosphere), the law of refraction becomes

c/cos © —c1/cos 6 = uy — u (IL.6-1)

Here u, is the medium velocity at the point where the sound ve-
locity is ¢, and the ray direction is given by ©;. Equation (1)
reduces to (Il.5—5) for # = #; = 0. It is clear from (1) and
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also from relatively simple graphical constructions that the effect
of the motion of the medium is to bend the wave front and ray in
the direction in which the motion takes place. Thus if the wind
velocity increases upward from the ground, sound wave fronts are
lifted to windward and depressed to leeward. Other things being
equal, this decreases the range to windward and increases it to
leeward. These considerations were once of considerable impor-
tance in the acoustical detection of aircraft, but were superseded
by radar. They remain of great importance, however, in sonic
gun ranging (see section V.5 below).

7. Huygens’ Principle; Reflection and Refraction at an
Interface.—The propagation of an acoustical wave frent through
a medium can also be studied by means of a principle developed
by Christiaan Huygens. According to this principle, in its ele-
mentary form, each point on a wave front (like F; in fig. 4, for ex-
ample) may be assumed to be the source of a hemispherical wavelet
which moves outward from F, in the direction of propagation;
the new wave front after a short time is the mathematical envelope
of all these wavelets; e.g., Fy in
the figure. This principle can be
demonstrated by considering the
solution . of the general wave
equation. A simple illustration
of the principle is the establish-
ment of the laws of reflection and
refraction at a plane interface
separating fluid media with dif-
ferent properties; e.g., different
mean densities and sound veloci-
ties.

Let 4B in fig. 5 represent the trace in the plane of the paper
of the plane interface between a fluid medium I in which the
velocity of sound is ¢; and the mean density p,, and a medium II
in which the corresponding quantities are c, and p, respectively.
Let CD denote the trace of a plane wave front (the latter being
perpendicular to the plane of the paper) incident on AB at angle
©;. This means that the incident ray travels in the direction HC

- B perpendicular to, CD. We can

g construct the reflected and re-

fracted wave fronts by means of

Huygens’ principle. At the in-

) stant the disturbance at one end
of the wave front has reached

FiG. 4

i
A c t B 7 .
3 E C on the interface, the disturb-
e‘.EBr 1 ance at the other end is still at
i ! D in medium I. In the time

ty = DE/c, which it takes the
disturbance at D to reach E on
the interface, the disturbance will
travel out in all directions from C. In particular in I it will
traverse a distance equal to DE.

If we draw with C as centre a semicircle with radius DE and
construct the straight line from E tangent to this we obtain FE
which from geometry makes the angle O, = ©; with AB. That this
is the reflected wave front can be confirmed by making a Huygens
construction for other points on the incident wave front. We see
that the reflected wave front makes the same angle with the inter-
face as the incident wave front. This, combined with the readily
established additional fact that both wave fronts are perpendicular
to the same plane (namely the plane of the paper) constitutes the
law of reflection. It can of course be equally well expressed in
terms of the incident and reflected rays, and is the same law that
holds for light wave fronts and rays.

Precisely+he sam e kind of analysis shows that after transmission
across the interface the incident wave front CD is changed to
the refracted wave front GE making the angle @, with 4B, such

that
(IL.7-1)
This is Snell’s law again, with 7,; the index of refraction of
medium II with respect to medium I. If the media are in mo-
tion with respect to each other, this result must be modified (cf.
equation II.6-1). The above formula accounts well for the

N F D
FiG. 5

sin Og/sin 0; = 62/61 = fin1

SOUND

passage of sound from air to water or vice versa.

8. Energy Propagation in' Sound Waves; Intensity.—In
section I.2 the intensity of sound was discussed, and its relation
with energy was implied. We now look upon sound propagation as
essentially a form of transmission of energy through a fluid. When
a fluid is disturbed by squeezing it at any place, work is done, rep-
resenting the expenditure of energy. The reappearance of the dis-
turbance at a distant point by wave propagation corresponds to the
transfer of the original energy from the point where it was put into
the fluid to the disiant point. The greater the amount of energy
transported on the average per unit area of wave front per unit of
time, the greater will be the intensity of the corresponding sound
wave.

To be more precise, the average rate of flow of energy in the

,sound wave per unit time per unit area of wave front is simply

calculated as the average of the product of the excess pressure
pe and the flow velocity 0§/0¢ in the medium. Analysis shows
that the intensity / of a plane wave computed in this way can be
expressed in the following way

I = p&/2poc (I1.8-1)

This important formula (G. W. Stewart and R. B. Lindsay,
Acoustics, pp. 62 ff. [1930]) says that the intensity of a plane wave
is equal to the square of the excess pressure amplitude p, divided
by twice the product of mean density and sound velocity. Sig-
nificantly it is independent of frequency.

The standard absolute umit of intensity is the erg/sec. cm.?
More practical is the watt/cm.2 or, in the metre-kilogram-second
system favoured by some engineers and physicists, the
watt/metre2. However, as noted in section I, the decibel is now
used as the standard measure of sound intensity. This is a relative
measure. If two sound waves have absolute intensities 7, and 7,
respectively they are said to differ in intensity level by D decibels
(or db.), where

D = 10 logiols/Ih (11.8-2)

Hence if I, = 2I;, D = 3.01 db., or doubling the intensity means
an increase of intensity of a little more than 3 db. To use this
method of measuring intensity requires the choice of a standard
level. This is often taken as that corresponding to an average
excess pressure of 1 dyne/cm.2 in air (close to the normal level
for conversational speech). The minimum audible sound lies ap-
proximately 70 db. below this level, while the threshold of feeling,
when hearing becomes painful, lies about 70 db. above this level.
These figures are approximate and actually depend on frequency.

From equation (1) it is clear that the intensity of sound at given
pressure depends on the medium and in particular on the product
poc. This quantity is known as the specific acoustic resistance
of the medium (for a plane wave). For water, for example, it is
about 3,800 times its value for air at standard pressure. Conse-
quently the same excess pressure in water produces a much smaller
intensity than in air and it might seem that it is harder to produce
an intense sound in water than in air. This, however, neglects
considerations connected with the source of sound, which are dis-
cussed later (section IIl.g). It turns out that at given frequency
and pressure a solid radiating source is actually more efficient in
water (and in liquids generally) than in air.

9. Intensity of Spherical Sound Waves.—Though equation
(I1.8-1) was cited as applying to a plane wave, a similar formula
applies to a spherical wave in the corresponding medium. Here, to
be sure, the pressure and particle velocity expressions are different.

‘Whereas for a plane wave the excess pressure and flow velocity

(sometimes called particle velocity) amplitudes are constant in a
nonabsorbing medium, in the case of a spherical wave they both
fall off with the distance from the source of the radiation (section
II.4 above). The analytical expressions are complicated and will
not be reproduced here. When the multiplication and averaging
processes are carried out as in section II.8 above, we obtain for
the intensity in the spherical wave at distance r from the source

I = pt/2poer® (IL.g-1)
Both (I1.8-1) and (II.g-1) can clearly be put in the same form if



