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Preface to the Second Edition

The book has been revised and extended, in order to reflect important
developments in the field of probabilistic modelling and performance
evaluation since the first edition. Notable among these is the introduction
of queueing network models with positive and negative customers. A large
class of such models, together with their solutions and applications, is
described in Chapter 4. Another recent development concerns the solution
of models where the evolution of a queue is controlled by a Markovian
environment. These Markov-modulated queues occur in many different
contexts; their exact and approximate solution is the subject of Chapter 5.
Finally, the queue with a server of walking type described in Chapter 2 is
given a more general treatment in Chapter 10.

Erol Gelenbe
Isi Mitrani
February 2010
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Chapter 1
Basic Tools of Probabilistic Modelling

1.1. General background

On a certain level of abstraction, computer systems belong to the same
family as, for example, job-shops, supermarkets, hairdressing salons and
airport terminals; all these are sometimes described as “mass service
systems” and more often as “queueing systems”. Customers (or tasks, or
jobs, or machine parts) arrive according to some random pattern; they
require a variety of services (execution of arithmetic and logical operations,
transfer of information, seat reservations) of random durations. Services are
provided by one or more servers, perhaps at different speeds. The order of
service is determined by a set of rules which constitutes the “scheduling
strategy”, or “service discipline”.

The mathematical analysis of such systems is the subject of queueing
theory. Since A. K. Erlang’s studies of telephone switching systems,
in 1917-1918, that theory has progressed comnsiderably; today it boasts
an impressive collection of results, methods and techniques. Interest in
queueing theory has always been stimulated by problems with practical
applications. In particular, most of the theoretical advances of the last
decade are directly attributable to developments in the area of computer
systems performance evaluation.

Because customer interarrival times and the demands placed on the
various servers are random, the state S(t) of a queueing system at time ¢
of its operation is a random variable. The set of these random variables
{S(t),t > 0} is a stochastic process. A particular realisation of the random
variables — that is, a particular realisation of all arrival events, service
demands, etc. — is a “sample path” of the stochastic process. For example,
in a single-server queueing system where all customers are of the same type,
one might be interested in the stochastic process {N(t),t > 0}, where N (t)
is the number of customers waiting and/or being served at time t. A portion

1
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of a possible sample path for this process is shown in Fig. 1.1: customers
arrive at moments a, ag, ... and depart at moments d;, ds, . ..

An examination of the sample paths of a queueing process can disclose
some general relations between different quantities associated with a given
path. For instance, in the single-server system, if N(t;) = N(t2) for
some t; < tp, and there are k arrivals in the interval (¢,t;), then
there are k departures in that interval. Since a sample path represents
a system in operation, relations of the above type are sometimes called
“operational laws” or “operational identities” (Buzen [1]). We shall derive
some operational identities in section 1.7. Because they apply to individual
sample paths, these identities are independent of any probabilistic assump-
tions governing the underlying stochastic process. Thus, the operational
approach to performance evaluation is free from the necessity to make such
assumptions. It is, however, tied to specific sample paths and hence to
specific runs of an existing system where measurements can be taken.

The probabilistic approach involves studying the stochastic process
which represents the system. The results of such a study necessarily depend
on the probabilistic assumptions governing the process. These results are
themselves probabilistic in nature and concern the population of all possible
sample paths. They are not associated with a particular run of an existing
system, or with any existing system at all. It is often desirable to evaluate
not only the expected performance of a system, but also the likely deviations
from that expected performance. Dealing with probability distributions
makes this possible, at least in principle.

We shall be concerned mainly with steady-state system behaviour
that is, with the characteristics of a process which has been running for
a long time and has settled down into a “statistical equilibrium regime”.
Long-run performance measures are important because they are stable;
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being independent of the early history of the process, and independent
of time, they are also much easier to deal with. We shall, of course, be
interested in the conditions which ensure the existence of steady-state.

This chapter introduces the reader to the rudiments of stochastic
processes and queueing theory. Results used later in the book will be derived
here, with the emphasis on explaining important methods and ideas rather
than on rigorous proofs. In discussing queueing systems, we shall use the
classic descriptive notation devised by D. G. Kendall:

l T |

(arrival pattern) (service pattern) (number of servers)

e.g. D/M/2 describes a queueing system with Deterministic (constant)
interarrival times, Markov (exponential) service times and 2 servers.

1.2. Markov processes. The exponential distribution

Let S(t) be a random variable depending on a continuous parameter
t (t > 0) and taking values in the set of non-negative integers {0,1,2,...}.
We think of ¢ as time and of S(t) as the system state at time t. The
requirement that the states should be represented as positive integers is
not important; it is essential that they should be denumberable. Later, we
shall have occasions to use vectors of integers as state descriptors.

The collection of random variables {S(t),t > 0} is a stochastic
process. That collection is said to be a “Markov process” if the probability
distribution of the state at time ¢ 4+ y depends only on the state at time ¢
and not on the process history prior to t:

P(S(t +y) = jIS(u);u < 1)
= P(S(t+y)=j|S®), ty>0,j=0,1,.... (1.1)

The right-hand side of (1.1) may depend on ¢, y, j and the value of S(¢). If,
in addition, it is independent of ¢, i.e. if

P(S(t+y)=j|S(t) =1) =pi;(y) forallt, (1:2)

then the Markov process is said to be “time-homogeneous” (for an excellent
treatment of stochastic processes see Cinlar [3]). From now on, whenever
we talk of a Markov process, we shall assume that it is time-homogeneous.

Thus, for a Markov process, the probability p; ;(y) of moving from state
i to state j in time y is independent of the time at which the process was in
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state 7 and of anything that happened before that time. This very important
property will be referred to as the “memoryless property”.

The probability p; ;(y), regarded as a function of y, is called the
“transition probability function”. The memoryless property immediately
implies the following set of functional equations:

pijr+y) = Zp,] Dprj(y), Ty>0, i,j=0.1,.... (1.3)

These equations express simply the fact that, in order to move from state
¢ to state j in time x + y, the process has to be in some state k after time
x and then move to state j in time y (and the second transition does not
depend on ¢ and ). They are the Chapman-Kolmogorov equations of the
Markov process. Introducing the infinite matrix P(y) of transition functions
pij(y), we can rewrite (1.3) as

Pz +y)=P@)P(y), xz,y>0. (1.4)
We shall assume that the functions p; j(y) are continuous at y = 0:

1 ifi=j .
0 otherwise. (L5)

lim pi4(y) = {
That assumption, together with (1.3), ensures that p; ;(y) is continuous,
and has a continuous derivative, for all y > 0; 4,7 = 0,1,... (we state this
without proof).
A special role is played by the derivatives a; ; of the transition functions
at t = 0. By definition,

a;; = lim M 1=0,1,...
=0y (1.6)
a;j = 1imM 3§ =1051y:z0.
y—=0 y
Hence, if h is small,
pij(h) =a;jh+o(h), i#j=0,1,..., (1.7)

where o(z) is a function such that 1111_}10 [o(x)/x] = 0.

In other words, if the Markov process is in state ¢ at some moment t,
then the probability that at time ¢+ h it is in state j is nearly proportional
to h, with coefficient of proportionality a;;. That is why a;; is called
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the “instantaneous transition rate from state i to state j”, i # j. The
probability that the process leaves state i by t+ h is approximately equal to

1—])1"1'(]1): —(l.,jva'/l"f‘O(h), 1:0,1, (18)

so —a; ; is the instantaneous rate of transition out of state i. Of course, we
must have

—Qi; = iai.]’- (1.9)

3=0
J#L

In fact, since P(y) is a stochastic matrix (its rows sum up to 1), the rows
of P’/(y) must sum up to 0 for all y > 0.

Let A = [a;;], i, =0,1,... be the matrix of instantaneous transition
rates. Differentiating (1.4) with respect to = and then letting z — 0
yields a system of equations known as the Chapman-Kolmogorov backward
differential equations:

P'(y) = AP(y). (1.10)

Similarly, differentiating (1.4) with respect to y and letting y — 0 yields
the Chapman-Kolmogorov forward differential equations

P'(z) = P(x)A. (1.11)

Either (1.10) or (1.11) can be solved for the transition probability functions,
subject to the initial conditions P(0) = I (the identity matrix) and P’(0) =
A. In a purely formal way, treating P(y) as a numerically valued function
and A as a constant, (1.10) and (1.11) are satisfied by

P(y) = eAv. (1.12)

This turns out, indeed, to be the solution, provided that (1.12) is
interpreted as
,l/"
P(y) = —A", y>0. 1.13
W)= y > (1.13)
n=0
Thus, the transition probability functions are completely determined
by their derivatives at y = 0. It should be clear, however, that to find
them in practice is by no means a trivial operation. The matrix P(y), for
finite values of y, is referred to as the “transient solution” of the Markov
process. As far as closed-form expressions are concerned, transient solutions
are unobtainable for all but a few very simple Markov processes.
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Let {S(t),t > 0} be a Markov process with instantaneous transition
rate matrix A. Suppose that at time ¢ the process is in state . What is
the distribution of the interval 7; until the first exit from state ¢ (that
interval is called the “holding time”)? And what is the probability ¢, ; that
the next state to be entered will be state j? According to the memoryless
property, the answers to both these questions are independent of ¢t and of
the process history prior to t. In particular, they are independent of how
long the process has already spent in state 7. Consider first the holding time;
denote by H;(z) the complementary distribution function of 7; : I:Il(m) =
P(n; > z). From the memoryless property, if the process stays in state i
for time x, the probability that it will remain there for at least another
interval y is independent of x. Therefore,

Hi(x +y) = Hi(x)Hi(y), ,y>0. (1.14)

Any distribution function which satisfies (1.14) must fall into one of
the following three categories:

(1) Hz((l') = 1 for all x > 0. If this is the case, once the process enters
state ¢ it remains there forever (properly speaking, the holding time
does not have a distribution function then). States of this type are
called “absorbing”.

(ii) H;(z) = 0 for all z > 0. In this case the process bounces out of state
1 as soon as it enters it. Such states are called “instantaneous”.

(iii) H;(z) is monotone decreasing from 1 to 0 on the interval [0,00) and
is differentiable. States in this category are called “stable”.

From now on, we shall assume that all states are stable. Differentiating
Eq. (1.4) with respect to y and letting y — 0 we obtain H](x) = —\;H;(z),
where \; = —H/(0). Hence
I:I,(I) —e M >0,
and the distribution function H;(x) = P(n; < x) is given by
Hi(z)=1—eN% z>0. (1.15)

To determine the parameter A, in terms of the matrix A, note that
according to (1.15) the probability of leaving state ¢ in a small interval
h is equal to H;(h) = Ajh + o(h). Comparing this with (1.8) shows that \;
is exactly the instantaneous transition rate out of state 1:

)‘i: _a'i,i’ ’[:O,l, (116)



Basic Tools of Probabilistic Modelling 7

From (1.15), (1.7) and the memoryless property it follows that the
probability that the process remains in state i for time z and then moves
to state j in the infinitesimal interval (z,z + dz) is equal to

e Ma; idr, x>0, j#i.

Integrating this expression over all z > 0 gives us the probability that the
next state to be entered will be state j:

oo
G =/ e MTg dp =T = B o0, (1.17)
0 Ai Qi

We derived (1.15) and (1.17) under the assumption that the Markov
process was observed at some arbitrary, but fixed, moment ¢. These results
continue to hold if, for example, the process is observed just after it enters
state i. Moreover, a stronger assertion can be made (we state it without
proof): given that the process has just entered state 7, the time it spends
there and the state it enters next are mutually independent.

The behaviour of a Markov process can thus be described as follows:
at time ¢t = 0 the process starts in some state, say ¢; it remains there for an
interval of time distributed exponentially with parameter \; (average length
1/A:); the process then enters state j with probability g; ;, remains there for
an exponentially distributed interval with mean 1/);, enters state k with
probability g;, etc. The successive states visited by the process form a
“Markov chain” — that is, the next state depends on the one immediately
before it, but not on all the previous ones and not on the number of moves
made so far. This Markov chain is said to be “embedded” in the Markov
process.

We shall conclude this section by examining a little more closely
the exponential distribution defined in (1.15). That distribution plays a
central role in most probabilistic models that are analytically tractable. It
owes its preeminent position to the memoryless property. If the duration
n of a certain activity is distributed exponentially with parameter A,
and if that activity is observed at time z after its beginning, then the
remaining duration of the activity is independent of x and is also distributed
exponentially with parameter A:

Pn>z+y) e AMetw)
Pn>x+yl|n>x) = P> 1) === M = P(n>y).

(1.18)



