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CHAPTER 1

Overview

1.1. Introduction

A Shimura variety of orthogonal type arises from the Shimura datum consisting
of the orthogonal group SO(Lg) of a quadratic space Lg of signature (I —2,2) and
the set

D :={N C Lg | N oriented negative definite plane}
which has the structure of an Hermitian symmetric domain and can be interpreted
as a conjugacy class of morphisms S = Resﬁ% Gm — SO(LR). For any compact open
subgroup K C SO(Ly(~)) we can form the Shimura variety

[SO(L)\D x SO(Lpc=) )/ K]

in which we always consider the quotient as an orbifold. It is a smooth manifold for
sufficiently small K| and it always has an algebraic model M¥ | in general a smooth
Deligne-Mumford stack.!

For simplicity we assume for the moment that there is an integral lattice Lz C
Lg with cyclic discriminant group L7 /Ly of square-free order €. Let K be the group
of those integral isometries that induce the identity of the discriminant group. It
goes back to Siegel [60] that in this case

Li-1)/2]
(1.1) vol(MK):TW—“)/?J( I1 C(l—Qi))
=1

!
L(1-+, 21,

) 1 (l-1)/2

C || (p<’—1>/2+ (—) q>p> 211,

p

ple/2

where x is the associated quadratic character (possibly trivial), ®, is the Hasse
invariant at p, and where the volume is understood w.r.t. to a natural volume form
(highest power of the Chern class of a canonical ample automorphic line bundle).
This volume is in fact an intersection number and should therefore be a rational

number. Inserting the well-known formulas
. Ba; l B2 x
1-2i)=— , L{1— =, = —-—

CA-2i)=-% ( 2 X) 1/2
we see that the quantity (1.1) is indeed a rational number. It is also (up to a

factor 2) the proportionality factor that occurs in the famous proportionality prin-
ciple of Hirzebruch and Mumford [55] (cf. 2.6.22) applied to this case. For | = 2,

Ldefined over Q for [ > 2
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equation (1.1) is nothing but the classical analytic class number formula for defi-
nite binary quadratic forms. There exist formulas of similar shape for all locally
symmetric spaces (see, e.g., [47] for the case of Chevalley groups). In the special
case considered here M¥ is, in fact, canonically defined over? Z[%] Therefore, using
Arakelov theory, one obtains an analogous arithmetic ‘volume element’ (the highest
power of the arithmetic Chern class of the same automorphic line bundle). To com-
pute its Arakelov degree, which naturally is called the arithmetic volume of M¥ | is
the main objective of this book. The result is (in the special case considered here):

(1.2) vol(M¥) = vol(M¥)

[(l_l)/zj /! 5
-1 1-2
o S (g )

2 t=1 C(l - 2 )
L'(1—1/2,y) 1 1. e
el el o . N SOy A0 21,
L1—1/2,x) 2 "2~ 37%|3 |
+ (1-1)/2 —1\(-1)/2
1« P =155 o, 1
=3 log(p) + 5 log(2) 211,
— 1-1)/2
2p|6/2 p=1)/2 4 (?1)( )/ o, 2

modulo rational multiples of log(2) (see B.1.3 for missing definitions).
We observe, of course, an apparent similarity between the formulas (1.1) and
(1.2), and in fact, we have:

vol(MK) = dA~1(Lz;0) vol(MK) = 4%}\-1(132;5) »

for the function ‘
., _ g2 g stz 12 WL ps 4 20)¢(1 — 25 — 24)
(Lzjs) =27 (2m)" le” H I'(2s + 2i) cos(m(s + 1))
0s/2 (s/2+l/2 L(1-s-1/2,%x)
D(s+1/2)cos(m(s/2+ |1/4]))

—1 (l-l)/Q
2 T1 <p(l—1)/2+s N (7) cpp) if 1 is odd,

ple/2

if [ is even,

The function A=1(Lz; s) has, however, an intrinsic and much more general definition
in terms of representation densities. Its study was the main subject of the paper
[26] by the author. Formula (1.2) had been known only in some cases for | < 4,
and was conjectured in some cases for [ = 5.

Our proof uses only information from the “Archimedean fibre,” that is, we
do not need explicit computations of local intersection numbers. We generalize
work of Bruinier, Burgos, and Kiihn [10] which dealt with the case of Hilbert
modular surfaces. Borcherds’ construction of orthogonal modular forms [2], and a
computation of the integral of their norm [11,35] are used.

2and conjecturally over Z
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The orthogonal Shimura varieties are interesting in particular because they con-
tain special algebraic cycles of arbitrary codimension whose arithmetic, respectively
geometric volumes are conjectured to be encoded as a special value, respectively
derivative of Fourier coefficients of Eisenstein series. This relation, in turn, has deep
arithmetic consequences, including for example the formula of Gross and Zagier [21]
and vast generalizations of it. It is also the key to the calculation of geometric and
arithmetic volumes.

More precisely, these cycles are constructed as follows: For an isometry z: M —
L, where M is positive definite consider the subset

D, ={NeD|N Lz(M)}

of D. If (K-stable) lattices Lz and My or more generally a K-invariant Schwartz
function ¢ € S(M; ., ® Lyx)) is chosen, we define cycles Z(L, M, p; K) on the
Shimura variety by taking the quotient of the union of the D, over all integral
isometries (respectively all isometries in the support of ¢ in a weighted way). See
Section 3.1 for the precise definition. For singular lattices M analogous cycles
can be defined. Consider a model M(§ O(L)) of a toroidal compactification of the
Shimura variety (the notation will be explained below). We consider the generating
series
Om(L.piT)= Y. [Z(L.(Q).¢; K)|exp(2miQT)
QeSym?((2™)*)

with values in its algebraic Chow group CH™ (M(g O(L))C) ®C. Assume now that

M(KO(L)) is even defined over Z in a “reasonably canonical” way. Kudla proposes

a definition of arithmetic cycles Z(L, M, p; K,v), depending on the imaginary part
v of 7, too, and also for singular and for indefinite M, such that

Om(LigiT) = Y. [ZL,(Q), % K, V)] exp(2miQT)
QeSym?((Z™)*)

should have values in a suitable Arakelov Chow group CH (M (% O(L))) ® C. He

proposes specific Green’s functions which have singularities at the boundary.

The orthogonal Shimura varieties come equipped with a natural Hermitian
automorphic line bundle Z*£ whose metric also has singularities along the bound-
ary. This provides us (via multiplication with a suitable power of its first Chern
class and taking pushforward) with geometric (respectively arithmetic) degree maps
deg: CH?(---) — Z (respectively (Te?g: Eﬁp(- -+) — R). Assuming that an Arakelov
theory can be set up to deal with all different occurring singularities, Kudla conjec-
tures (for the geometric part this goes back to Siegel, Hirzebruch, Zagier, Kudla-
Millson, Borcherds, etc.)?:

(K1) ©,, and ©,, are (holomorphic, respectively nonholomorphic) Siegel mod-
ular forms of weight [/2 and genus m. '

(K2) deg(©,,) and (Yf%(ém) are equal to a special value (respectively the special
derivative at the same point) of a normalization of the standard Eisen-
stein series of weight [/2 associated with the Weil representation of L
[26, Section 4].

3If | — r < m + 1, the statement has to be modified. Here r is the Witt-rank of L.
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(K3) O, (L, 01;71) * Omy (L, 02;72) = Oy s (L, 01 & 92, (™ 7)) and simi-
larly for 0.

(K4) éul can be defined with coefficients being zero-cycles on the arithmetic
model, and it satisfies the properties above.

Kudla shows (see [36] for an overview) that this implies almost formally vast gen-
eralizations of the formula of Gross-Zagier [21]. In full generality the conjectures
are known only for Shimura curves [44]. Section 1.3 contains a brief overview on
what is known in other special cases.

(K2) is closedly related to the calculation of geometric and arithmetic volumes
because the cycles in question consist themselves (for sufficiently good reduction)
of models of orthogonal Shimura varieties of smaller dimension.

We are thus able to obtain partial results towards the arithmetic part of (K2)
for all Shimura varieties of orthogonal type. More precisely, we prove the following:

3.5.5. Main Theorem. Let Ly C Lqg be an integral lattice in a quadratic
space of signature (I — 2,2). Let K be its discriminant kernel. Let D’ be the
product of the primes p such that p? | D, where D is the discriminant of Ly. We
have

(1) vole (M(K0(L2))) = 43~ (L20),
(2) volg(M(KO(Lz))) = £43(Lz; )ls=o in Rapy.

ds

Let My, be a lattice of dimension m with positive definite Qar € Sme(Mé).
Let D" be the product of the primes p such that Mz, ¢ M or ]\/Izp/MZp is not
cyclic. Assume

e/ —m>4,or
e | =4, m=1, and Lg has Witt rank 1.

Then we have for each k € Z[(L3/Lz) @ My]:
(3) volg(Z(Lz, Mz, &; K)) = 4A(Lz; s)fi( Lz, Mz, k3 0),
(4) volg(Z(Lz, Mz, k; K)) = L4(X"Y(Lg; s)fi(Lz, Mz, k3 5)) |
m R2DD”-

s=0

Here Ry is R modulo rational multiples of log(p) for p | N, and the A and
it are functions in s € C, given by certain Euler products (3.2.12) associated with
representation densities of Lz and My. The function 1 appears as the “holomorphic
part” of a Fourier coefficient of the standard Eisenstein series associated with the
Weil representation of L. Moreover K is the discriminant kernel and M(X O(Lz)) is
any toroidal compactification of the orthogonal Shimura variety (see below). Finally
£ is the integral tautological bundle on the compact dual equipped with an equi-
variant metric on the restriction of its complex fibre to D; the geometric/arithmetic
volumes are computed w.r.t. the associated arithmetic automorphic line bundle
(Definition 2.6.4) £*€ on M(KO(Lz)).

In view of the Main Theorem it seems plausible that, if L} /Ly is cyclic, the
function 4\~1(L; s) is always the correct normalizing factor in (K2).* This is in ac-
cordance with the observations of Kudla-Rapoport—Yang [42] in the case of Shimura
curves.

40f course this is only a statement about its first 2 Taylor coefficients.
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For a more detailed introduction to the method of proof, we refer the reader to
Section 1.4. An overview on known results in the direction of the conjectures will
be given in Section 1.3.

In Chapter 2 up to Section 2.5 we recall the functorial theory of

e canonical integral models of toroidal compactifications of mixed Shimura
varieties of Abelian type,
e their arithmetic automorphic vector bundles,

developed in the thesis of the author [25]. This theory, for general Hodge or even
Abelian type, relies on an assumption regarding the stratification of the compacti-
fication (2.5.6) which was recently proven by Madapusi [49] and previously for the
orthogonal Shimura varieties—spin-version—for [ < 5 by Lan [46], (the Shimura
varieties are of P.E.L. type in that case). The theory is crucial even for the pre-
cise formulation of our main result mentioned above. The reader is assumed to
be familiar with the theory of rational Shimura varieties as developed by Deligne
[16,17] and to some extent with Pink’s thesis [58] which extends the theory to the
mixed case and contains the construction of rational canonical models of toroidal
compactifications.

Our models are constructed locally (i.e. over an extension of Z). Input
data for the theory are p-integral mixed Shimura data (abbreviated p-MSD) X =
(Px.Dx, hx) consisting of an affine group scheme Px over Spec(Z,)) of a certain
rigid type (P) (see 2.1.6) and a set Dx which comes equipped with a finite cov-
ering hx : Dx — Hom(S¢, Px c) onto a certain conjugacy class, subject to some
axioms, which are roughly Pink’s mixed extension [58] of Deligne’s axioms for a
pure Shimura datum. Consider a compact open subgroup K C Px(A(®)) of the
form K (P) x Px(Z,) for a compact open subgroup K C Px(A(>?)) (we call those
admissible). For the toroidal compactification a certain rational polyhedral cone
decomposition A of a natural conical complex Cx associated with X is needed.
We call the collection XX (respectively XX) extended (compactified) p-integral
mixed Shimura data (abbreviated p-EMSD, respectively p-ECMSD). These form
categories where the morphisms X X = f,' Y are pairs (a, p) of a morphism « of
Shimura data and p € Py(A(>®P)) satisfying compatibility conditions with the K's
and A’s. The construction of the models defines a functor M from p-ECMSD to the
category of Deligne-Mumford stacks over reflex rings (above Z,)). The functor,
base-changed to C and restricted to p-EMSD, becomes naturally isomorphic to the
one given by the construction of the analytic mixed Shimura variety. It is character-
ized uniquely by: Deligne’s canonical model condition; Milne’s extension property
(integral canonicity); a stratification of the boundary into mixed Shimura varieties,
together with boundary isomorphisms of the formal completions along these strata
with similar completions of other (more mixed) Shimura varieties. These boundary
isomorphisms, for the case of the symplectic Shimura varieties, are given by Mum-
ford’s construction [19, Appendix]. There is also a functor M"Y (‘compact’ dual)
from p-MSD to the category of schemes over reflex rings. The duals come equipped
with an action of the group scheme Px, and we have morphisms of Artin stacks

Zx: M(EX) - MY(X)/Px.ox]-

Those constitute a pseudonatural transformation of functors, are a model of the
usual construction over C if A is trivial, and are compatible with the boundary
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isomorphisms. This is the theory of integral automorphic vector bundles. For more
information on the ‘philosophy’ of these objects in terms of motives see Section 1.5.

In particular this enables us to do the following construction: Let X be, for
simplicity, a pure Shimura datum with reflex field Q, and let £ be a Px-equivariant
vector bundle on MY (X) equipped with a Px p-equivariant Hermitian metric hge
on its restriction to the image of the Borel embedding hx (Dx) < MY (X)(C). The
above morphism of stacks and its 2-isomorphism over C with the analytic period
construction allows us to obtain a well-defined Arakelov vector bundle (Z2*€,Z*hg).
The metric Z*hg, however, has (rather mild) singularities along the boundaries of
toroidal compactifications (see below). Without the existence of this canonical
pullback, it would not even make sense to speak of arithmetic volumes.

The remaining sections of Chapter 2 are completely revised with respect to
[25]: In Section 2.6 we define integral Hermitian automorphic vector bundles and
the notions of arithmetic and geometric volume. Furthermore we set up an Arakelov
theory which has enough properties to deal with singularities of the natural Her-
mitian metrics on “fully decomposed” automorphic vector bundles. This uses work
of Burgos, Kramer, and Kiithn [14,15] but the arithmetic Chow groups are defined
using a technically simpler method.

In Sections 2.7 and 2.8 a precise general g-expansion principle is derived from
the abstract properties of Section 2.5.

Chapter 3 is concerned entirely with the theory of orthogonal Shimura vari-
eties: In Section 3.1 the structure of the models of orthogonal Shimura varieties is
investigated and special cycles are defined.

In Section 3.2 we use the general g-expansion principle to prove that Borcherds
products with their natural norm yield integral sections of an appropriate integral
Hermitian line bundle. Among other things the product expansions of Borcherds’
are adelized and their Galois properties investigated.

In Section 3.3 we prove that the bundle of vector valued modular forms for the
WEeil representation (which appear as input forms in the construction of Borcherds
products) has a rational structure. Then we use this to construct input forms with
special properties which will be needed later.

In Section 3.4 we relate Borcherds’ theory and Arakelov geometry on the or-
thogonal Shimura varieties. Its main result is an (averaged) arithmetic Siegel-Weil
formula which will be crucial for the proof of the Main Theorem.

In Section 3.5 the Main Theorem is proven. An overview on the proof may be
found in Section 1.4.

In Appendix A additional material on quadratic forms, on “lacunarity of mod-
ular forms,” and on semilinear representations is provided which will be needed
in the proofs in Section 3.5. Appendix B contains a continuation of the calcula-
tion in [26] of the function A\(Lgz; s) for the special case of lattices with square-free
discriminant.

Finally, it is a pleasure to thank the Department of Mathematics and Statistics
at McGill University and especially Henri Darmon, Jayce Getz and Eyal Goren,
for providing a very inspiring working environment during the preparation of this
book.



1.2. A BRIEF INTRODUCTION TO SIEGEL-WEIL THEORY 7

1.2. A brief introduction to Siegel-Weil theory

1.2.1. Consider two lattices Lz = Z!, and Mz = Z™ with integral and pos-
itive definite quadratic forms @Qr, and Q,s. It is a classical problem, to which
already Gauss, Euler and in particular Siegel devoted themselves, to determine
the representation number, that is, the number of elements in the set of isometric
embeddings

I(Lz, Mz) = {a: Mz < Lz | a is an isometry}.

It includes (for m = 1) questions like: “In how many ways can an integer be
represented as a sum of [ squares?”.

If Mz = Z™ then Q) is given by an element in Sym? ((Z"L) ). We write (Q)
for the lattice Z™ with quadratic form given by ). The generating series, the theta
series of Lz,

(1.3) Om(Lz;iT)= Y, #I(Lz(Q))exp(2miQ - 7),

QESym?*((Z™)")

(here 7 is an element in Siegel’s upper half space H,, C (C™ ® C™)*, the subset of
elements with positive definite imaginary part) is a Siegel modular form of weight
1/2 for a certain congruence subgroup of Sp,,,, (the symplectic or metaplectic group,
according to the parity of [). For example ©7((1);7) is just the classical theta
function.

Under some conditions on the dimensions, a certain weighted sum of these
theta functions over all classes L(Zl ) in the genus Lz is an Eisenstein series (cf. [26,
Section 4] for details):

1.2.2. Theorem (Siegel-Weil). Ifl > 2m + 2, we have
ZCz (t) = En(®;7, 50)-

The additional parameter sy indicates that this Eisenstein series is in fact the
(holomorphic) special value of a nonholomorphic Eisenstein series E,,(®;7,s) at
s = 89 := (l—m+1)/2. The Fourier coeflicients of the series are given by a product
formula

(1.4) Lz, (Q); 5,y) = poo(L, (Q); 5,9) [ [ o(Lz,, (Q)3 )

Here y is the imaginary part of 7—its appearance indicates that this series is non-
holomorphic for general s. At s = 0 the p, are just the p-adic volumes of the
‘spheres’ I(L, (Q))(Z,), classically called representation densities. For almost all
p, the functions y, are very simple polynomials in p~* (see, e.g., [26, Theorem 8.1]).
Otherwise they may be computed by determining sufficiently many representation
numbers of the congruences modulo p™.

Essentially, the Siegel-Weil formula (1.2.2) is valid, if and only if [ > m + 1,
but if [ < 2m + 2, the value of the Eisenstein series has to be defined via analytic
continuation in s and the theta function has sometimes to be complemented by
indefinite coefficients.

The mere fact that the representation numbers (in an average over classes)
should be given by a product over local volumes or densities can be explained
easily in the adelic language:
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1.2.3. Let Lz C Lg now be an integral lattice in an arbitrary quadratic space
(not necessarily definite) and Mg a positive definite quadratic space. Assume [ —
m > 3, for simplicity, for the rest of the discussion. On the adelic points SO(Ly) of
the special orthogonal group of Lg, there is a canonical measure p. It is a product
over local measures j1,, on the various SO(Lg, ), constructed by any algebraic volume
form defined over Q [65]. The product g is independent of the choice of this
form. The volume of SO(Lg)\ SO(La) which turns out to be finite, is called the
Tamagawa number, and we have

1.2.4. Theorem ([65]). Forl>3
vol(SO(Lg)\ SO(Ly)) = 2.

From this the fact that the representation numbers (in an average over classes)
should be given by a product over local volumes already follows, as we will explain
now (in a slightly broader context):

1.2.5. Let ¢ € S(Ly~) ®@ M (,) be a Schwartz-Bruhat function (i.e., locally
constant with compact support). Let K = HP K, be a compact open subgroup
of SO(Lj~)) which stabilizes ¢. For example, K could be the stabilizer of the
lattice Lz and ¢ the characteristic function of Lj. Let Ko be a maximal compact
subgroup of SO(Lg). (If L is definite, this will be equal to SO(Lg).)

From 1.2.4 we may infer that the volume of the real analytic orbifold
[SO(Lg)\(SO(La)/ K K)],

induced by the quotient of po, and some measure on K, is:
(1.5) 2 [ ] vol; " (5.,).
174

We have a finite disjoint decomposition

I(L, M)(A>)) N supp(p) = U Ko,

If this set is nonempty, we have by Hasse’s principle an o’ € I(L, M)(Q) and
hence g; € SO(Ly~)) with g7 'a’ = ;. There is a lattice L(Zz) C Lg satisfying
L(z) = gz‘lL We denote by abuse of notation by a;* the lattice im(a’)* N Lg).
We have aJ- ® V4= im(ev;)*. However, only the genus of a;L is well-defined, but we
will use the notation only for objects which depend only on this genus.
Consider the symmetric space®
D(L) = {maximal negative definite subspaces of Lg} = SO(Lg)/K

We have an embedding ID( +) x SO((ai )a=)) = D(L) x SO(Ly(~)), given by the
natural inclusion of D(a;-) < D(L) and multiplication of the adelic part by g; from
the right.

We form the special cycle Z(L, M. p; K), the following formal sum (with real
coefficients):

Z¢ [so ) o) \D(c L)><so((a,.i)A(,c,)/(shh'mso((ail),w,))]

5 Caution: This definition differs from the later definition of Do (L) in case that L has signature
(1-2,2)
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which we consider, by means of the embeddings above, as a formal sum of real
analytic suborbifolds of [SO(Lg)\D(L) x (SO(L~))/K)]. It does not depend on
the choices made above.

The canonical measures [26, 2.4] on SO(Lg), SO(a;") and I(L, M) over any Q,
are related by an orbit equation [26, 5.6]—an equation of the shape:

Z ‘volume of group’

~ ‘yolume of stabilizer’’
orbits

‘volume of space’ =

similar to the corresponding formula for actions of finite groups on sets.
From this and (1.5) above

vol(Z(L, M, ¢p; K)) _ vol(Ko)
(1.6) vol(SO(Lg)\D(L) x SO(Lyx)/K) ~ vol(KZ, )/Lﬁf)(A(w)) pla)u(a)

follows immediately. K7, is any maximal compact subgroup of any of the SO(a;. L)
We define p10o(L, M) to be the quantity vol(K.)/ vol(K.,) (computed w.r.t. the
canonical measures). If L is definite, it is equal to:

! k/2
vol(I(L, M)(R)) = ] ZW.

k=l—-m+1
Observe that
[SO(Le)\D(L) x (SO(Ly)/K)] = [ JI(SO(Lg) N % KO\D(L),

with respect to a set {g;}; of representatives of SO(Lg)\ SO(L))/K, i.e., of the
classes of SO(Lg) with respect to the compact open group K. (If K is the stabilizer
of a lattice Ly, this coincides with the classical notion of classes in the genus Lj.)
Similarly, we have

(1.7) Z(L,M,p; K) = Zw(am [(SO((a5")g) N K9+ )\D(e;")],

where {g;x}x is a set of representatives of the classes of SO((a;")g) w.r.t. 9K N

SO((e") ac))-
Let now K be the stabilizer of Ls and ¢ the characteristic function. We have
the following easy

1.2.6. Lemma. There is a bijection

class L(Zj) in the genus Lz,
SO(LY)-orbit SO(LY)a in I(LWD), M)(Z)
~ SO(L3)-orbit SO(L )a in (L, M)(Z),
class in SO(GQ)\SO( ey )1 K (V80 (0550, |

We have, of course, a similar statement for any K.
We denote the cycle in this case by Z(Lgz, Mz) and it is, according to the lemma
and (1.7), equal to:

Z(Lz, Mz) = > [(SO(az) NSO(LY))\D(L)]-

7 SO(LY)acI(LD) ,M)(Z)
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1.2.7. Now, if the form Q, is positive definite, the quotient of volumes (1.6)
has an interpretation as a global representation number. For this observe that in

this case {

vol(SO(Lz)\D(L)) = Zrg5r7—

and similarly

vol((S0(a2) N SO(LY)\D(at)) = -

#(SO(a) N SO(LY)))’

Furthermore, we have by the set theoretical orbit equation,

#1(LY), M)(Z) Z 1
#s0(LY) SO error atyzy F(80(aF) NSO(LF))
Hence we get “
vol(Z(Lz, Mz)) X #ILY, M) (2)] #SO(LY))
vol(SO(L@)\ID(L) x SO(Ly=))/K) ¥, 1/ #S0(LY)

which is precisely a weighted sum over the representation numbers. Combined with
(1.6), we get Siegel’s formula. The deep part, of course, is hidden in Theorem 1.2.4.

1.2.8. If the quadratic form on L is indefinite, say of signature (p,q), then
these representation numbers do not make sense because there are always infinitely
many isometries. However, equation (1.6) tells us, what the correct analogue in the
indefinite case is: the quotient of volumes

vol(Z(L, M, ¢; K))
vol([SO(Lo)\D(L) x (SO(La=))/K)])’

For every cohomology theory H (in a very broad sense) one might in addition
consider the classes [Z(L,(Q), p; K)]¥ of these cycles and define their generating
theta series:

Of(L.pir)= Y [2LAQ), ¢ K)T Ul @ exp(2miQ - 7),
QeSym?((Z™)*)

where e, is a certain Euler class, and 7(Q) is the rank of Q. One always expects
modularity of this function and a relation to Eisenstein series.

Kudla and Millson [37,38] have shown (generalizing work of Hirzebruch and
Zagier [24]) that the generating series

OR(LipiT)= Y. [Z(L Q@i K)PUer @ exp(2miQ - T),
QESym?((Z™)*)
with values in the Betti cohomology groups
HP=™4([SO(Lg)\D(L) x (SO(Ly=)/K)], C)

is a modular form. Under certain conditions on [, m and the Witt rank of L, its
‘degree’ is the special value of an Eisenstein series:

(On(Ly w5 7),e™) = vole, ([SO(Lo)\D(L) x (SO(Lpi=))/K)]) Em (®; 7, 50)-
The latter equation follows essentially again from the Siegel-Weil formula (in its

full generality) or the Tamagawa number result, respectively. If Lg is anisotropic,
the locally symmetric space is compact and the pairing on the left is the degree of



