§ OREILLY"

Introducing

GitHub

A NON-TECHNICAL GUIDE

Peter Bell & Brent Beer



Introducing GitHub

A Non-Technical Guide

Peter Bell and Brent Beer

Beijing - Cambridge - Farnham + Kéln « Sebastopol - Tokyo [K@Ax{=|HMANA



Introducing GitHub
by Peter Bell and Brent Beer

Copyright © 2015 Pragmatic Learning, Inc. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette Indexer: Judy McConville
Production Editor: Melanie Yarbrough Interior Designer: David Futato
Copyeditor: Sonia Saruba Cover Designer: Karen Montgomery
Proofreader: Sharon Wilkey lllustrator: Rebecca Demarest

November 2014: First Edition

Revision History for the First Edition
2014-11-07:  First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491949740 for release details.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. Introducing GitHub, the cover image,
and related trade dress are trademarks of O'Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-94974-0
(LST]



Preface

GitHub is changing the way that software gets built. Conceived originally as a way to
make it easier for developers to contribute to open source projects, GitHub is rapidly
becoming the default platform for software development. More than just a tool for
storing source code, GitHub provides a range of powerful tools for specifying, discus-
sing, and reviewing software.

Who This Book Is For

If you are working with developers on a software project, this book is for you,
whether you are a:

» Business stakeholder who wants to have a sense of how your project is going

« Product or project manager who needs to ensure that software is delivered on
time and within budget

» Designer who needs to deliver anything from mockups to HTML/CSS for a
project

« Copywriter who's adding marketing copy or other content to a site or an app

« Lawyer who's reviewing the legal implications of a project or writing the terms
and conditions or privacy policy

o Team member who needs to review, comment on, and/or contribute to the
project

+ Developer who is new to using GitHub and wants to learn how to collaborate
using GitHub in a team

If you need to view the progress of a piece of software while it’s being developed, if
you would like to be able to comment on the progress, and if youd like to have the
option of contributing changes to the project, this book will show you how to effec-
tively collaborate with a software development team by using GitHub.

vii



Beyond Software

While GitHub is still primarily used to collaborate on the development of software,
it’s also a great way for a team to collaborate on a wide range of projects. From the
authoring of books (like this one) and the distribution of models for 3D printing to
the crafting of legislation, whenever you have a team of people collaborating on a col-
lection of documents, you should consider using GitHub to manage the process. Our
examples will assume that you're working on software because that is currently the
most common use case, but this book is the perfect guide to collaborating via GitHub
—whatever kind of project you're working on.

Who This Book Is Not For

This book is designed to teach the core skills required to collaborate effectively using
GitHub. If you are already familiar with forking, cloning, and using feature branches
and pull requests for collaboration, you probably won't learn that much.

Equally, if you are looking for an in-depth introduction to the Git version control sys-
tem, this is not the book that you are looking for. This book covers just enough Git to
do the job of introducing GitHub, but it's not a comprehensive introduction to Git.
For that you should read the excellent Version Control with Git by Jon Loeliger and
Matthew McCullough (O'Reilly, 2012).

How to Use This Book

We've deliberately made this book as concise as possible. You should be able to read it
pretty quickly. If you want to gain the confidence that comes from really understand-
ing what GitHub is about and how to use it, try to read the book from start to finish.

However, we know that you're busy. If you're in a rush, start by skimming the first
chapter. Chapter 1 gives you a brief introduction to Git, GitHub, and some key terms
that you’'ll need to understand to make sense of the rest of the book. Then feel free to
just jump into whatever chapters you need. We've tried to write the book so that each
chapter runs you through specific workflows, so you should be able to read just the
chapter you need to complete a particular task.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

viii | Preface



Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Safari® Books Online
. c. Safari Books Online is an on-demand digital library that deliv-
ﬂ Vo ¢ | ers expert content in both book and video form from the

world’s leading authors in technology and business.

Technology professionals, software developers, web designers,
and business and creative professionals use Safari Books Online as their primary
resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O'Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-

Preface | ix



mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/intro-github.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Peter: I would like to thank my wife for her tireless support of the time and effort
required to write this book—and the many other projects that keep me away from her
more than Id like that don't have acknowledgments sections! I would also like to
thank my Mum for always going above and beyond to give me the support I needed
to always follow my dreams—even under often difficult circumstances.

Brent: I'd like to thank my Mom for her constant encouragement for reading, without
which I may never have found a love for it. And also my Dad. Without him letting me
watch him work on our computer, entertaining me with the Oscar the Grouch trash
can utility on our Macintosh, and encouraging me to learn how to program, I would
not be in the field I am today.

We would both like to thank the inspiring Matthew and Jordan McCullough and the
rest of the GitHub team for their feedback on this book and their ideas and support

x | Preface



over the years. Much of the best content here came from them. Wed also like to thank
the amazing Meg Blanchette at O'Reilly, without whom this book would never have
been conceived, written, or delivered—thanks so much, Meg!

Preface | xi






Table of Contents

PROBACE. 1« « siv s wrc s s 0 s i wme oo s i sy i o 978 o 41 o 0 w1 2l 38 W o 5 40 5 it vii
To Introduction.. se. ems u s wes s sos eme vs —— PPN pe——
What Is Git? 1
What Is GitHub? 1
Why Use Git? 1
Why Use GitHub? 2
Key Concepts 3

2o VIBWING o sconomisio v ins iisiaicvs om0 s aom o 500 0o 6 00k i 00 006 s 08 0 B i 5 &5 7
Introducing the Project Page 7
Viewing the README.md File 8
Viewing the Commit History 9
Viewing Pull Requests 11
Viewing Issues 13
Viewing the Pulse 15
Viewing GitHub Graphs 16
The Contributors Graph 17

The Commits Graph 18

The Code Frequency Graph 19

The Punch Card Graph 20

The Network Graph 21

The Members List 22

The Traffic Graph 23

3 " BURBIE: . s0c o win: s s ovess mie o 3 3o s s s i 10 4 950 .90 e o 05,8 31 B 35 i £'55 3 25
Contributing via a Fork 25

Adding a File 26




Creating a Pull Request
Editing a File
Renaming or Moving a File
Working with Folders
Creating a Folder
Renaming a Folder
The Limits of Editing on GitHub

CollabOoration. . ... vveeee et neeeeiieneseerneenaraenans

Committing to a Branch
Creating a Pull Request from a Branch
Collaborating on Pull Requests
Involving People with Pull Requests
Reviewing Pull Requests
Commenting on Pull Requests
Adding Color to Comments
Contributing to Pull Requests
Testing a Pull Request
Merging a Pull Request
Who Should Merge a Pull Request?
Pull Request Notifications
Best Practices for Pull Requests
Issues
Creating a New Issue
Managing Milestones for Issues
Managing Labels for Issues
Commenting on Issues
Referencing Issues in a Commit
Best Practices for Issues
Wikis
Getting Started with a Wiki

Adding and Linking to a Page on Your Wiki

GitHub Pages
Creating a Website for Your Project

Creating a Website for Yourself or Your Organization

treatingand Contiqnng. ... ovveovesossmvanosmvmmsuammans

Creating a Repository

Adding Collaborators
Configuring a Repository
Integrating with Other Systems
Personal Versus Organizational

------------------

------------------

28
36
39
41
41
41
42

43
43
46
48
49
49
49
50
51
53
54
55
55
56
56
57
58
60
61
61
62
62
62
65
66
66
69

n
71
76
77
79
85

iv

| Table of Contents



Creating an Organization 86

Managing Teams 87

0. DOWNIOBING: oo 555 106 556 w8 50w wimn wowa eis 31078 576 5 518 0 918 6508 w1018 087X D18 920 M0 4 ki 00w W3 93
Why Clone a Repository? 93
GitHub for Mac 94
Making a Commit Using GitHub for Mac 103
Viewing Changes in GitHub for Mac 106
GitHub for Windows 109
Making a Commit Using GitHub for Windows 116
Configuring Command-Line Tools in GitHub for Windows 118

Fo NORESEOPE: .o s v 550 58 5 05§ 0 V08 Sl 0 308 B § B § 00 (P SRS 4500 o § Bk 9505 0058 B 121
Index.......ooovvvinniiinnnnnns s 20 s wiape e o e 95 5 0 RS ey i 8 K e 123

Table of Contents | v






CHAPTER 1
Introduction

In this chapter we'll start by introducing Git and GitHub. What are they, what is the
difference between them, and why would you want to use them? We'll then introduce
some other common terms that you'll often hear mentioned when people are discus-
sing GitHub. That way you’ll be able to understand and participate in discussions
about your projects more easily.

What Is Git?

Git is a version control system. A version control system is a piece of software designed
to keep track of the changes made to files over time. More specifically, Git is a dis-
tributed version control system, which means that everyone working with a project in
Git has a copy of the full history of the project, not just the current state of the files.

What Is GitHub?

GitHub is a website where you can upload a copy of your Git repository. It allows you
to collaborate much more easily with other people on a project. It does that by pro-
viding a centralized location to share the repository, a web-based interface to view it,
and features like forking, pull requests, issues, and wikis, which allow you to specify,
discuss, and review changes with your team more effectively.

Why Use Git?

Even if you're working on your own, if you are editing text files, there are a number of
benefits to using Git. Those benefits include the following:




The ability to undo changes
If you make a mistake, you can go back to a previous point in time to recover an ear-
lier version of your work.

A complete history of all the changes
If you ever want to see what your project looked like a day, week, month, or year ago,
you can check out a previous version of the project to see exactly what the state of the
files was back then.

Documentation of why changes were made
Often it’s hard to remember why a change was made. With commit messages in Git,
it's easy to document for future reference why you're making a change.

The confidence to change anything
Because it’s easy to recover a previous version of your project, you can have the confi-
dence to make any changes you want. If they don’t work out, you can always get back
to an earlier version of your work.

Multiple streams of history
You can create different branches of history to experiment with different changes to
your content or to build out different features independently. You can then merge
those back into the main project history (the master branch) once theyre done, or
delete them if they end up not working out.

Working on a team, you get an even wider range of benefits when using Git to keep
track of your changes. Some of the key benefits of Git when working with a team are:

The ability to resolve conflicts
With Git, multiple people can work on the same file at the same time. Usually Git will
be able to merge the changes automatically. If it can't, it'll show you what the conflicts
are and will make it easy for you to resolve them.

Independent streams of history
Different people on the project can work on different branches, allowing you to work
on separate features independently and then merge the features when they’re done.

Why Use GitHub?

GitHub is much more than just a place to store your Git repositories. It provides a
number of additional benefits, including the ability to do the following:

Document requirements
Using Issues, you can either document bugs or specify new features that youd like to
have your team develop.

Collaborate on independent streams of history
Using branches and pull requests, you can collaborate on different branches or fea-
tures.

2 | Chapter 1:Introduction



Review work in progress
By looking at a list of pull requests, you can see all of the different features that are
currently being worked on, and by clicking any given pull request, you can see the
latest changes as well as all of the discussions about the changes.

See team progress
Skimming the pulse or looking through the commit history allows you to see what the
team has been working on.

Key Concepts

There are a number of key concepts that you'll need to understand to work effectively
with Git and GitHub. Here is a list of some of the most common terms with a short
description of each and an example of how they might be used in conversation:

Commit
Whenever you save your changes to one or more files to history in Git, you create a
new commit. Example usage: “Lets commit these changes and push them up to
GitHub.”

Commit message
Every time you make a commit, you need to supply a message that describes why the
change was made. That commit message is invaluable when trying to understand
later why a certain change was implemented. Example usage: “Make sure to include
Susan’s comment about the new SEC guidelines in the commit message.”

Branch
An independent series of commits off to one side that you can use to try out an
experiment or create a new feature. Example usage: “Let’s create a branch to implement
the new search functionality.”

Master branch (master)
Whenever you create a new Git project, there is a default branch created that is called
master. This is the branch that your work should end up on eventually once it’s ready
to push to production. Example usage: “Remember never to commit directly to master.”

Feature (or topic) branch
Whenever you're building a new piece of functionality, you’ll create a branch to work
on it. That’s called a feature branch. Example usage: “We've got way too many feature
branches. Let’ focus on getting one or two of these finished and into production.”

Release branch
If you have a manual QA process or have to support old versions of your software for
your customers, you might need a release branch as a place to make any necessary
fixes or updates. There is no technical difference between a feature or release branch,
but the distinction is useful when talking about a project with your team. Example
usage: “We've got to fix the security bug on all of our supported release branches.”

Key Concepts | 3



Merge
This is a way to take completed work from one branch and incorporate it into
another branch. Most commonly you'll merge a feature branch into the master
branch. Example usage: “Great job on the ‘my account’ feature. Could you merge it into
master so we can push it to production?”

Tag
A reference to a specific historic commit. Most often used to document production
releases so you know exactly which versions of the code went into production and
when. Example usage: “Let’s tag this release and push it to production.”

Check out
To go to a different version of the project’s history to see the files as of that point in
time. Most commonly you’ll check out a branch to see all of the work that has been
done on it, but any commit can be checked out. Example usage: “Could you check out
the last release tag? There’s a bug in production that I need you to replicate and fix.”

Pull request
Originally, a pull request was used to request that someone else review the work you
completed on a branch and then merge it into master. Now, pull requests are often
used earlier in the process to start a discussion about a possible feature. Example
usage: “Go create a pull request for the new voting feature so we can see what the rest of
the team thinks about it.”

Issue
GitHub has a feature called Issues that can be used to discuss features, track bugs, or
both. Example usage: “You're right, the login doesn’t work on an iPhone. Could you cre-
ate an issue on GitHub documenting the steps to replicate the bug?”

Wiki
Originally developed by Ward Cunningham, wikis are a lightweight way of creating
web pages with simple links between them. GitHub projects often use wikis for docu-
mentation. Example usage: “Could you add a page to the wiki to explain how to config-
ure the project to run on multiple servers?”

Clone
Often you'll want to download a copy of a project from GitHub so you can work on it
locally. The process of copying the repository to your computer is called cloning.
Example usage: “Could you clone the repo, fix the bug, and then push the fix back up to
GitHub later tonight?”

Fork
Sometimes you don't have the necessary permission to make changes directly to a
project. Perhaps it’s an open source project written by people you don’t know or it’s a
project written by another group at your company that you don’t work with much. If
you want to submit changes to such a project, first you need to make a copy of the
project under your user account on GitHub. That process is called forking the reposi-

4 | Chapter 1: Introduction



