I.ecture Notes in

Mathematics

L.S.Block W.A. Coppel

Dynamics
in One Dimension

X f >» X
h h
Y v
) >y
(@)

@ Springer-Verlag



L. S.Block W. A. Coppel

Dynamics
1n One Dimension

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest



Authors

Louis.Stuart Block.

Department of Mathematics
University of Florida
Gainesville, Florida 32611, USA

William Andrew Coppel
Department of Theoretical Physics
Institute of Advanced Studies
Australian National University
GPO Box 4

Canberra 2601, Australia

Mathematics Subject Classification (1991): 26A18, 54H20, S8F08

ISBN 3-540-55309-6 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-55309-6 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer- Verlag.
Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typesetting: Camera ready by author
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
46/3140-543210 - Printed on acid-free paper



Editorial Policy

for the publication of monographs

In what follows all references to monographs, are applicable also to multiauthorship
volumes such as seminar notes.

§ 1. Lecture Notes aim to report new developments - quickly, informally, and at a high
level. Monograph manuscripts should be reasonably self-contained and rounded off.
Thus they may, and often will, present not only results of the author but also related work
by other people. Furthermore, the manuscripts should provide sufficient motivation,
examples and applications. This clearly distinguishes Lecture Notes manuscripts from
journal articles which normally are very concise. Articles intended for a journal but too
long to be accepted by most journals, usually do not have this “lecture notes” character.
For similar reasons it is unusual for Ph. D. theses to be accepted for the Lecture Notes
series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted (preferably in
duplicate) either to one of the series editors or to Springer- Verlag, Heidelberg . These
proposals are then refereed. A final decision concerning publication can only be made
on the basis of the complete manuscript, but a preliminary decision can often be based
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chapter, and an indication of the estimated length, a bibliography, and one or two sample
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decision as definite as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at least 100

pages of scientific text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.
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Preface

There has recently been an explosion of interest in one-dimensional dynamics. The extremely
complicated — and yet orderly — behaviour exhibited by the logistic map, and by unimodal
maps in general, has attracted particular attention. The ease with which such maps can be
explored with a personal computer, or even with a pocket calculator, has certainly been a
contributing factor. The unimodal case is extensively studied in the book of Collet and
Eckmann [49], for example.

It is not so widely known that a substantial theory has by now been built up for arbitrary
continuous maps of an interval. It is quite remarkable how many strong, general properties can
be established, considering that such maps may be either real-analytic or nowhere differentiable.
The purpose of the present book is to give a clear, connected account of this subject. Thus it
updates and extends the survey article of Nitecki [96]. The two books [112], [113] by
Sarkovskii and his collaborators contain material on the same subject. However, they are at
present available only in Russian and in general omit proofs. Here complete proofs are given.
In many cases these have previously been difficult of access, and in some cases no complete
proof has hitherto appeared in print.

Our standpoint is topological. We do not discuss questions of a measure-theoretical nature
or connections with ergodic theory. This is not to imply that such matters are without interest,
merely that they are outside our scope. [A forthcoming book by de Melo and van Strien
discusses these matters, and also the theory of smooth maps.] The material here could indeed
form the basis for a course in topological dynamics, with many of the general concepts of that
subject appearing in a concrete situation and with much greater effect.

Several of the results included here were first established for piecewise monotone maps.
There exist also other results which are valid for piecewise monotone maps, but which do not
hold for arbitrary continuous maps. Although we include some results of this nature, we do not
attermnpt to give a full account of the theory of piecewise monotone maps.

The final chapter of the book deals with extensions to maps of a circle of the preceding
results for maps of an interval. In contrast to the earlier chapters, the results here are merely
stated, with references to the literature for the proofs. [Complete proofs are given in a
forthcoming book by Alseda, Llibre and Misiurewicz, which also discusses the material in our



Chapters 1,7 and 8.] We do not discuss at all some results which have been established for
other one-dimensional structures. The pre-eminent importance of the interval and the circle
appears to us adequate justification for our title. The list of references at the end of the book,
although extensive, has no pretence to completeness.

This book has its origin in a course of lectures which the older author gave at the Australian
National University in 1984. The first four chapters are based on the xeroxed notes for that
course. However, the older author acknowledges that without the assistance of the younger
author the book could never have reached its present greatly expanded form. We accept
responsibility equally for the final product.

Our manuscript was originally submitted as a whole volume for the series Dynamics
Reported. After its submission responsibility for publication of this series passed from Wiley
and Teubner to Springer-Verlag. The resulting changes in format would not have presented
insurmountable difficulties if the authors had been experts with TEX or LATEX. Since we
were not, we decided instead to produce a good camera-ready manuscript, following the
instructions to authors provided by Springer-Verlag for its Lecture Notes in Mathematics series.
We are extremely grateful to the Managing Editors of Dynamics Reported, Professors U.
Kirchgraber and H.O. Walther, for the time and care they devoted to our manuscript, for
obtaining valuable referees' reports, and finally for generously agreeing to its appearance in the
Lecture Notes in Mathematics rather than in Dynamics Reported.

We thank Professor Xiong Jincheng for contributing some unpublished results
(Propositions VI.53 and VI.54), and the referees for several useful suggestions. We take this
opportunity to thank also the numerous typists who have assisted us over a period of eight
years. W.A.C. is grateful to the University of Florida for support during a visit to Gainesville
in 1987. L.S.B. would like to thank the Australian National University for its hospitality
during visits in 1988 and 1990. These visits considerably accelerated progress on the book.
L.S.B. also thanks the University of Géttingen for its hospitality during a visit in 1988, and
Zbigniew Nitecki for helpful conversations during that visit. Finally he thanks Ethan Coven for
many helpful conversations over the past few years.

We dedicate this book to our families, in gratitude for their support.

Louis Block
Andrew Coppel
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Introduction

This book is primarily concerned with the asymptotic behaviour of sequences (x,) defined
iteratively by x,,, ; = f(x,)), where f is an arbitrary continuous map of an interval into itself. The
sequence (x,,) is the trajectory of the initial point x, under the map f.

An important reason for studying this problem, in addition to its intrinsic interest, comes
from higher-dimensional dynamics. The extremely complicated behaviour of some
3-dimensional flows, or 2-dimensional diffeomorphisms, is also observed in non-invertible
1-dimensional maps. We hope to gain a better understanding of this behaviour by studying
1-dimensional maps, since they are much more amenable to mathematical analysis. Many
remarkable properties of such maps have been established in recent years.
+p =X, for every n > 0.
Thus the trajectory (x,,) is periodic. It is said to have period p if p is the least positive integer

If in the trajectory (x,) we have x, = x, for some p > 0, then x,,

such that x, =x,. It turns out that if a continuous map f has a periodic trajectory with a given
period p, then it necessarily has periodic trajectories with certain other periods. A complete
description of all possible sets of periods, for the periodic trajectories of a continuous map of an
interval, is given by a theorem of Sarkovskii, which is stated and proved in Chapter I. An
interesting feature of this proof is the use of directed graphs.

In Chapter II we begin the study of nonperiodic trajectories. A simple example is a
trajectory (x,) with x, = x, for all » > 2 and either x;, <xy <x; or x; <xp <Xx;. A map
possessing such a trajectory is said to be turbulent. It turns out that all trajectories of non-
turbulent maps are subject to rather stringent restrictions, whereas turbulent maps possess some
trajectories which behave wildly. This wild behaviour is established by using the shift map of a
symbol space. Thus, even though we are primarily interested in maps of an interval, we are
naturally led to consider maps of other spaces. In Chapter II we also study the effects of
slightly perturbing the given map f, and we give some results which hold for continuously
differentiable or piecewise monotone maps, but not for all continuous maps.

The notions of stable and unstable manifold, of a periodic point, are important in the theory
of smooth diffeomorphisms. For continuous maps of an interval, the stable set — or basin of
attraction — of a periodic point may not be a manifold or have nice properties. However, as we
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show in Chapter III, the unstable manifold exists and is a well-behaved object. Moreover, one
also has left and right unstable manifolds.

In Chapter III we also study homoclinic points. This term was first used by Poincaré, for
diffeomorphisms, to describe a point belonging to both the stable and unstable manifolds of a
periodic point. In our situation we demand instead that the point hit the periodic point after
finitely many iterations, in addition to belonging to its unstable manifold. We show that there is
a close relationship between turbulence and the existence of homoclinic points.

Periodicity represents the most precise type of repetitive behaviour. Several other types are
studied in topological dynamics. In Chapter IV we discuss ordinary recurrence (or ‘Poisson
stability’) and nonwanderingness. In Chapter V we consider strong recurrence (often also
called ‘recurrence’), regular recurrence, and chain recurrence. Chain recurrence is the weakest,
and the most recently introduced, of these types of repetitive behaviour. Our treatment of it has
some novelty, since we adopt a purely topological definition instead of the usual metric one.

Many of the results of Chapters IV and V are valid for continuous maps of any compact
metric space. However, there are also results which are specific to maps of an interval. We
mention, in particular, a remarkable characterization of w-/imit points due to Sarkovskii. These
results give a strength to the theory for an interval which is lacking in the general case.

We define a map of an interval into itself to be chaotic if some iterate of the map is turbulent
or, equivalently, if there exists a periodic point whose period is not a power of 2. It is shown in
Chapter VI that there is a marked distinction between the behaviour of chaotic and non-chaotic
maps. Exaggerated claims about a new theory of chaos have been appearing in the popular
press. In fact there is no generally accepted definition of chaos. It is our view that any
definition for more general spaces should agree with ours in the case of an interval. This
requirement is not satisfied by some of the definitions used in the literature. The definition
given above is strictly 1-dimensional. However, we show that a map is chaotic if and only if
some iterate has the shift map as a factor, and we propose this as a general definition. Other
definitions which meet our requirement are certainly possible, notably that some iterate is
topologically mixing (as shown in Chapter VI) or that the map has positive topological entropy
(as shown later in Chapter VIII), but they do not really call for the use of a new word.
Ultimately it will probably be necessary to distinguish between different types of chaotic
behaviour, in the same way as for recurrence.

To characterize a periodic trajectory we need to know not only its period but also its type,
i.e. the way in which its points are ordered on the real line. It may be asked if Sarkovskii's
theorem on periods can be strengthened to take account of types. That is, if a map has a
periodic trajectory of a given type, does it necessarily have periodic trajectories of certain other
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types? In a sense this question is completely answered by a theorem of Baldwin, which says
that a periodic trajectory of type P forces a periodic trajectory of type Q if and only if the
linearization of P has a trajectory of type Q. We prove Baldwin's theorem in Chapter VII, but
we do not investigate in detail the rather complicated partial ordering of types which forcing
induces.

A periodic trajectory is said to be primary if it forces no periodic trajectory with the same
period. In Chapter VII we also characterize completely the primary trajectories, and we prove
that a map is chaotic if and only if it has a periodic trajectory which is not primary.

Chapter VIII is devoted to the important concept of topological entropy. After establishing
the main results which hold for any compact topological space, we devote our attention to
results which hold for a compact interval. The most profound of these is a theorem of
Misiurewicz, one of whose consequences is the result, already implied, that a map is chaotic if
and only if it has positive topological entropy.

Finally, in Chapter IX we summarize, with references only for the proofs, extensions to
maps of a circle of the foregoing results for maps of an interval. In the literature some results
have also been given for 1-dimensional branched manifolds, and in particular for ‘Y’, but these
lie outside our scope. [See, for example, L. Alseda, J. Llibre and M. Misiurewicz, Trans.
Amer. Math. Soc., 313 (1989), 475-538, and a series of papers by A.M. Blokh in Teor.
Funktsii Funktsional. Anal. i Prilozhen.]

An introduction, such as this, frequently concludes with some remarks on prerequisites. A
most attractive feature of our subject is that the only knowledge demanded of the reader would
be contained in a first course on real analysis. For the reader possessing this knowledge we
present a variety of interesting and nontrivial results which were unknown thirty years ago! We
hope that some readers may be stimulated to make additional contributions of their own, even if
it means that our book will become outdated.
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Periodic Orbits

1 SARKOVSKII’'S THEOREM

By an interval we will always mean, except in Chapter VIII, a connected subset of the real line
which contains more than one point. Thus an interval may be open, half-open or closed, but
not degenerate, and an endpoint of an interval need not belong to the interval. However, the
phrase ‘nondegenerate interval’ will sometimes be used for emphasis. We will denote by <a,b>
the closed interval with endpoints a and b, when we do not know (or care) whether a < b or
a>b.

Let f:I— I be a continuous map of the interval / into itself. Having performed the map f
once we can perform it again, and again, and again. That is, we consider the iterates f" defined
inductively by

fi=f frl=fof" (n21).

We also take £ to be the identity map, defined by f%(x) = x for every x € 1. Evidently f"is
also a continuous map of / into itself. We are interested in the behaviour of the tragjectory of x,
i.e. the sequence f"(x) (n 2 0), for arbitrary x € I It is convenient to make a distinction
between the trajectory of x and the orbit of x, which is the set of points {f"(x) : n > 0}.

There is a very simple graphical procedure for following trajectories. In the (x,y) — plane
draw the curve y = f(x) and the straight line y = x. To obtain the trajectory with initial point x,
we go vertically to y = f(x), then horizontally to y =x. This gives x, = f(x,), and the process is
repeated ad infinitum (see Figure 1).

A point ¢ € [is said to be a fixed point of f if f(c) = c. Thus the fixed points are given by
the intersections of the curve y = f{x) and the straight line y = x. If the interval / is compact it
necessarily contains at least one fixed point. For if / = [a,b] we have

flay-a20 2 f(b) - b,

and so the assertion follows from the intermediate value theorem for continuous functions.
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y=£ix)

0 Xy X X3 X X
Fig. 1

A point ¢ € Iis said to be a periodic point of f with period m if f™(c) = ¢, f¥c) # ¢ for
1 <k <m. The orbit of ¢ then consists of the m distinct points c, f(c), ..., f™~1(c) and the
trajectory of ¢ consists of the same points repeated periodically. By abuse of language the orbit
of ¢ will also be said to be periodic. A fixed point is a periodic point of period 1.

If f: I — R is a continuous map of an interval into the real line, then all or some of the
iterates may be defined on a subinterval of / and we may still talk about periodic points.
Throughout this chapter, unless otherwise stated, f will denote an arbitrary continuous map of
an arbitrary interval / into the real line.

We are going to study first the periodic orbits of f. Our main objective will be the proof of
the following striking theorem, due to Sarkovskii [102].

THEOREM 1 Let the positive integers be totally ordered in the following way:
3<5<7<9<.<23<25<.<223<225<...<23<22<2<1.

Iff has a periodic orbit of period n and if n < m, then f also has a periodic orbit of period m.
However, on the way we will derive a number of results of independent interest.
LEMMA 2 IfJ is a compact subinterval such that J < f(J), then f has a fixed point in J.

Proof 1fJ =[a,b] then for some c¢,d € J we have f(c) = a, f(d) =b. Thus f(c) < c, f(d) 2 d,
and the result follows again from the intermediate value theorem. O
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LEMMA 3 If J, K are compact subintervals such that K < f(J), then there is a compact
subinterval L = J such that f(L) =K.

Proof LetK =[a,b] and let ¢ be the greatest point in J for which f(c) = a. If f(x) = b for some
x € J with x > ¢, let d be the least. Then we can take L = [c,d]. Otherwise f(x) = b for some
x € Jwith x <c. Let ¢’ be the greatest and let d” < ¢ be the least x € J with x > ¢’ for which
fix) =a. Then we can take L =[c¢’d"]. O

LEMMA 4 IfJ,,J; ..., ], are compact subintervals such that J, < f(J,_;) (1 £k <m), then
there is a compact subinterval L < J, such that f™(L) = J,, andfKL) € J, (1 <k <m).
IfalsoJy € J,, , then there exists a point y such that f™(y) = y and f¥(y) € J, (0 < k < m).

Proof The first assertion holds for m = 1, by Lemma 3. We assume that m > 1 and that it
holds for all smaller values of m. Then we can choose L' < J; so that f™/(L") =J,, and
iy s Jeo1 (1 £k <m—-1). We now choose L < Jj so that f(L) =L".

The second assertion follows from the first, by Lemma 2. O

As a first application of these ideas we prove

PROPOSITION 5 Berween any two points of a periodic orbit of period n > 1 there is a point of a
periodic orbit of period less than n.

Proof Leta < b be two adjacent points of the orbit of period n. Since there is one more point
of the orbit to the left of b than to the left of @ we must have f™(a) > a, f™(b) < b for some m
such that 1 <m < n. It follows at once that f™(c) = ¢ for some ¢ such that a < ¢ < b, assuming
that f™ is defined throughout [a,b]. However, the same conclusion can be reached without this
assumption. For if J, = <f*(a), f¥(b)> is the closed interval with endpoints f*(a) and f4(b)
then J; € f(J;_;)) 1 <k<m). ButJy s J, ,since f™(a) 2 b, f™(b) < a. The result now
follows from Lemma 4. O

The method of argument used here can be refined. Suppose again that f has a periodic orbit
of period n > 1. Let x; <...< x,, be the distinct points of this orbit and set /; = [x;, x;, ]
(1 £j < n). With the periodic orbit we associate a directed graph, or digraph, in the following
way. The vertices of the directed graph are the subintervals /, ..., /,_; and there is an arc
L= if /; is contained in the closed interval <f(x;), f(xj+ 1)> with endpoints f(xj) and f(xj+ -



