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1 Introduction

1.1 Multiobjective Optimization

Over one hundred years ago, Francis Edgeworth (1845-1926) and Vilfredo Pareto
(1848-1923) laid the foundations of what is today called multicriteria decision mak-
ing. The basic assumption of multicriteria decision making is that whenever a de-
cision has to be taken, not only one but multiple objectives have to be taken into
account. Moreover, in general, these objectives are competing, i.e., no solution or
decision action exists for which all objectives can be met best simultaneously. An
example is given by different products in a market. Since, in general, a cheap prod-
uct has a rather bad quality while a product of good quality is rather expensive, a
compromise between the objectives ‘price’ and ‘quality’ has to be found. We can
only exclude products from consideration that are at least as expensive and, simul-
taneously, of at most the same quality as some other product. This is the basic
idea of dominance and nondominance in multiobjective optimization: Of interest
are exactly those solutions (products) that cannot be improved with respect to one
criterion without being impaired with respect to at least one other criterion. In the
literature, these solutions are called ‘nondominated’, ‘efficient” or, in honor to the fa-
thers of multicriteria decision making, ‘Pareto’ or sometimes also ‘Edgeworth-Pareto
optimal’, see Section 2.1 for a precise definition. Due to the conflicting nature of the
objectives, there is, in general, not only one but a set of Pareto optimal solutions.

As already suggested by the titles of the early publications Mathematical psychics
(Edgeworth, 1881) and Cours d 'Economie Politique (Pareto, 1896), multicriteria de-
cision making is an interdisciplinary field that, from the very beginning up to today,
attracts researchers and practitioners from various disciplines as economics, psychol-
ogy, mathematics and computer as well as engineering science. Thereby, the interests
range from the theoretical analysis of multiobjective optimization problems over the
practical computation and representation of solutions up to economical utility theory
and questions of human behavior in decision making. In brief, this thesis presents
new theoretical results for generating Pareto optimal solutions and shows the prac-
tical usefulness of the new theory.
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1.2 OQOutline of This Thesis

The content of this thesis is organized in two parts and nine chapters. The first three
chapters present the basics. The fourth and fifth chapter, which build Part I, contain
new theoretical results. Their practical application is demonstrated in Part II, which
consists of chapters six to eight. The last chapter summarizes the results of this
thesis. In what follows we describe the content of each chapter in more detail.

Chapter 2 assembles the relevant definitions, notions and concepts from the lit-
erature that are needed in the following. First, we provide general definitions from
the field of multicriteria optimization. After that we introduce the notions of repre-
sentations and approximations of the nondominated set and indicate quality criteria
from the literature. Then scalarizations as a well known concept to solve multicrite-
ria optimization problems are presented. Finally, the idea of a parametric algorithm
that consists in the iterative solution of scalarizations with varying parameters is
specified and the notions of a priori and adaptive (a posteriori) parameter schemes
are introduced.

Chapter 3 provides a detailed literature review on methods using (adaptive)
parametric algorithms. The survey on this topic starts with early publications dating
from the sixties of the last century and ends with very recent publications. As several
methods are solely applicable to the bicriteria case, we organize the literature review
into two sections, one devoted particularly to the bicriteria and the other one to the
general multicriteria case.

After the introduction, the preparation of the basics and the presentation of re-
lated literature, new theoretical results are presented in Part 1. In brief, Chapter 4
deals with new adaptive parameter schemes for well-known scalarization methods
with augmentation terms, particularly the augmented weighted Tchebycheff method.
Chapter 5 is concerned with the general framework of a new parametric algorithm.

In Chapter 4 we derive an adaptive parameter scheme for the augmented weighted
Tchebycheff method which is the first classic scalarization for which an augmenta-
tion term has been introduced. So far, only the weights have been controlled in
an adaptive way but the augmentation parameter has been chosen fixed to a small
positive constant. As reported in the literature, on the one hand, numerical issues
arise when this constant is too small and, on the other hand, nondominated points
are missed when the constant is chosen too large. We construct all parameters of
the augmented weighted Tchebycheff method in an adaptive way such that every
nondominated point of a discrete multicriteria optimization problem can be gener-
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ated and, at the same time, the augmentation parameter can be chosen as large
as possible up to a feasible upper bound. Besides the classic augmented weighted
Tchebycheff method we consider a generalized problem formulation that contains an
augmentation parameter for each objective and, thus, provides more flexibility. The
generalized formulation is particularly useful for the application to continuous prob-
lems, as it allows to incorporate a given trade-off among the objectives. For bicriteria
problems it is well known that a prescribed two-sided trade-off can be translated into
suitable parameters of a generalized augmented weighted Tchebycheff problem. We
improve existing approaches by proposing an adaptive parameter scheme that takes
all parameters, i.e., also the weights, into account. Finally, augmented variants of
the s-constraint method from the literature are discussed. We show that the aug-
mentation parameter of an augmented s-constraint scalarization can be determined
in the same way as it is proposed for the augmented weighted Tchebycheff method.

In Chapter 5 we develop the general framework of an adaptive parametric al-
gorithm that is based on a systematic decomposition of the search region, i.e., the
region potentially containing further nondominated points. We particularly study the
number of subproblems that have to be solved to generate complete representations
for discrete problems. In the literature, the best known upper bound on the number
of subproblems in the tricriteria case depends quadratically on the number of non-
dominated points. By indicating a new parametric algorithm in which at most three
subproblems are solved per nondominated point, we improve the former quadratic to
a linear upper bound. Thereby, the main key is a new decomposition criterion which
avoids redundancy. The parametric algorithm can be applied with any scalarization
that is suited for non-convex or discrete problems. If the s-constraint method is used,
we can reduce the upper bound further and show that at most two subproblems per
nondominated point are sufficient to obtain a complete representation. Finally, we
propose an extension of the new algorithm for any number of objectives.

The theoretical results of Part I are validated computationally in Part I1. Thereby,
the results of Part I are combined in the sense that the adaptive parameter scheme
from Chapter 4 is employed for each subproblem that is solved in the parametric
algorithm derived in Chapter 5.

In Chapter 6 we generate complete representations for discrete problems. In
the bicriteria case the performance of different variants of Tchebycheff scalarizations
is examined. Besides the validation of the adaptive parameter scheme proposed in
Chapter 4 we compare the adaptive parameter scheme to the classic fixed choice of
the augmentation parameter which is common in the literature. In particular, we
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show computationally that already for small instances of knapsack problems non-
dominated points are missed with the classic approach but not with the adaptive
parameter selection. We also study further algorithmic variants with local reference
points by which larger values for the augmentation parameter can be obtained. In
the tricriteria case we validate the formulas for the parameters of the augmented
weighted Tchebycheff method as well as the upper bound on the number of sub-
problems derived in Chapter 5. In all instances the complete nondominated set is
computed reliably with the help of the adaptive parameter scheme. Moreover, the
predicted upper bound on the number of subproblems is met exactly in all instances.
Besides the validation of our new parametric algorithm, we also compare it with
three state of the art methods for the generation of complete representations. OQur
algorithm clearly outperforms one of the three algorithms and can compete with the
other two in the sense that no algorithm outperforms the other with respect to the
number of subproblems solved and the required computational time.

In Chapter 7 we apply the new adaptive parametric algorithm to continuous
problems. for which incomplete representations of the nondominated set are sought.
We use common quality criteria to measure the quality of the representations. In or-
der to refine the representations iteratively, we propose different selection rules based
on the volume of the boxes into which the search region is decomposed and the contri-
bution to the dominated hypervolume. Tests with bi- and tricriteria problems from
the literature are performed. We compare different variants of Tchebycheff methods
employing an adaptive parameter scheme with an a priori e-constraint method. We
observe that with the adaptive methods considerably less infeasible or redundant
subproblems are generated than with the a priori method, in general. The adaptive
approaches perform particularly well when the nadir point is not known and its esti-
mate is rather bad. Hence, they are particularly useful for problems with more than

two criteria.

Chapter 8 treats a real-world problem in which the multicriteria control of sewer
networks is considered. Within a preliminary offline analysis we aim at constructing
a discrete representation of the nondominated set. Since the single-criterion solver
used for the subproblems is interrupted before its termination, it typically does not
provide local or global minima but intermediate solutions. These solutions often
correspond to dominated or even infeasible points. Therefore, we can only construct
a very scarce discrete approximation of the nondominated set. Moreover, due to
numerical issues, an a priori parameter scheme yields better results than an adaptive
scheme in some test cases. This shows that the performance of the underlying single-
criterion solver is crucial for the successful use of adaptive parameter schemes. If the

10
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generated points are not nondominated or close to nondominated points, an a priori
parameter selection might be preferred.

Chapter 9 contains a summary of the results of this thesis. Ideas for future
research are indicated directly at the end of each chapter of Parts I and IL.

11
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2 Preliminaries

In this chapter we collect the relevant notions, definitions and concepts that are
used in this thesis. They are common knowledge and can be found in textbooks
on multicriteria optimization, e.g., in Chankong and Haimes (1983), Steuer (1986),
Miettinen (1999), Jahn (2004) or Ehrgott (2005).

2.1 Terminology and Definitions
We consider multiple criteria optimization problems

min f(z) = (fi(@).... frn(2))” (2.1)

reX

with m > 2 objective functions f; + X — R, i = 1,...,m, and with feasible set
X C R™ We assume that the functions f;,i = 1,...,m, are continuous and that
X is non-empty and compact. If X is a discrete finite set, we call Problem (2.1)
discrete. The image of the feasible set X is denoted by Z := f(X) C R™ and is
called set of feasible outcomes.

To simplify notation, we will often refer to the points in Z without relating them
back to their preimages in the feasible set. Consequently, we equivalently formulate
Problem (2.1) in the outcome space as

B . T
minz = C5nscBm) s (2.2)

For two vectors z,z € Z we define

2<z & <7 Vi=1,..., m,
2<z & %<z Yi=1,...,m and 35e{l,...,m}: z; <z, (2.3)
22z & z<z Vi=1,...,m.

The symbols >, > and 2 are used accordingly. As there exists no canonical ordering
on R™ for m > 2. a definition of optimality is required. We use the Pareto concept
of optimality: A solution T € X is called Pareto optimal or efficient if there does
not exist a feasible solution x € X such that f(x) < f(&). The corresponding

13
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objective vector f(r) € R™ is called nondominated in this case. If, on the other
hand. f(z) < f(Z) for some feasible r € X. we say that f(x) dominates f(r), and
x dominates . If strict inequality holds for all m components, ie., if f(r) < f(Z).
then x strictly dominates T. If there exists no feasible solution x € X that strictly
dominates 7, then 7 is called weakly Pareto optimal or weakly efficient. We denote
the set of efficient solutions of (2.1) by Xz and refer to it as the efficient set, i.e.,

={zeX:BdreX:f@)<flx)} (2.4)
The image set of the set of efficient solutions is denoted by
Zy:=f(Xp)={2€Z:32€Z:2<z2} (2.5)

and is called the nondominated set of problem (2.1). In general, one nondominated
point f(x) might have more than one preimage ¥ € X. However, throughout this
thesis, it is sufficient to know one efficient solution per nondominated point.

A point T € X is called properly efficient according to Geoffrion (1968) if it is

efficient and if there exists a scalar Al > 0 such that for each i = 1...., m and each
z € X satisfying fi(x) < fi() there exists an index j # i with f;(z) > f;(Z) and
fi(x) = fi(z)
— < M. 2.6
H@ = £@) i

An efficient point that is not properly efficient is called improperly efficient. Note
that if the outcome space Z is discrete and finite, every efficient point is properly
efficient.

The notion of trade-off is closely related to the definition of proper efficiency.
According to Chankong and Haimes (1983), for given z. 7 € X. the ratio of change
T;j(x, %) involving objective functions f; and f;. i,j =1,...,m, i # j, is defined as

Tyt = S IE)

for fi(z) # fj(Z). Note that if fi(x) # fi(%), then T;j(x. %) = (Tyi(x, 7)) and
T;j(x,x) = T;j(Z. ) hold. In Kaliszewski and Michalowski (1997), for Z € Z and a
problem in maximization format, the trade-off TG(z) involving objective functions

(2.7)

zi and zj, i, =1,..., m, i # j, is defined as

TG(2) = sup 22 (2.8)
2€Z5(3) 2 — %

where Zj<(2) ={re iz <&z 2 5= Losamiist i) IfZ< (2) = 0, then
TE(Z) =oc foralli=1,...,m,i # j.
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