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Preface

Ben Kazan, 1982

Before describing the contents of this volume, let me first say a few words
about Benjamin Kazan, one of the Honorary Associate Editors of these
Advances, whose death on January 14 2009 was mentioned briefly in the
preface to volume 157. He was editor of the Academic Press series, Advances
in Image Pickup and Display from 1974 to 1983, after which the title was
absorbed into Advances in Electronics and Electron Physics (the earlier title of
these Advances).

Ben Kazan, born in New York in 1917, received his B.S. degree from
the California Institute of Technology, Pasadena, in 1938 and his M.A. from
Columbia University, New York, in 1940. In 1961, he was awarded the D.Sc.
degree by the Technical University of Munich. From 1940 to 1950, he was
Section Head at the Signal Corps Engineering Laboratories, working on the
development of new microwave storage and display tubes. For the next
eight years, he was engaged in work on colour television tubes and solid-
state intensifiers at the RCA Research Laboratories. From 1958 to 1962, he
was head of the Solid-state Display Group at Hughes Research Laboratories,
after which he moved to Electro-Optical Systems, an affiliate of the Xerox
Corporation, again working on solid-state and electro-optical systems. From
1968-1974, he was employed at the IBM Thomas J. Watson Research Center.
His last position was head of the Display Group at the Palo Alto Research
Center of the Xerox Corporation. A dinner was held in his honour at Xerox,
as the person holding the most patents at Xerox.

In addition to his editorship of Advances in Image Pickup and Display, he
was co-author of two books (notably, Electronic Image Storage with M. Knoll,
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viii Preface

Academic Press, New York 1968) and was also editor of the Proceedings of the
Society for Information Display. He was a Fellow of this Society as well as a
member of the American Physical Society.

In his leisure hours, he played the violin and enjoyed books about music
and medical topics, biographies and many other subjects. He was man of
great kindness and generosity and will be greatly missed by his family and
friends. On behalf of the publishers and myself, we extend our sincerest
condolences to Gerda Mosse-Kazan, his widow.

The present volume contains six chapters on very different subjects,
ranging from the early history of the microscope to mathematical
morphology, time lenses, fuzzy sets and electron acceleration. We begin
with a study of surface-plasmon-enhanced photoemission and electron
acceleration using ultrashort laser pulses by P. Dombi. This is a very young
subject and P. Dombi explains in detail what is involved and the physics of
these complicated processes.

This is followed by a fascinating article on the development of (light)
microscopy by B.J. Ford, with the provocative title ‘Did physics matter to
the pioneers of microscopy?’ He has chosen to work back to Hooke and van
Leeuwenhoek, starting with the microscopes we know today. I do not need to
do more than urge all readers of these Advances to plunge into this chapter,
which is truly “‘unputdownable’!

How can an image be decomposed into its various structural and textural
components? This is the subject of the chapter by J. Gilles, who provides a
very lucid account of recent progress in this area. The mathematical prelimi-
naries, which cover all the newer kinds of wavelets — ridgelets, curvelets and
contourlets — form an essential basis on which the remainder reposes.

The fourth chapter, by S. Svensson, brings together two different topics:
fuzzy distance transforms and electron tomography. Once again, the opening
sections provide a solid mathematical basis for the application envisaged and
I am certain that this full introductory account to these techniques will be
heavily used.

The next chapter will appeal to mathematical morphologists: here, M. van
Droogenbroeck describes the notion of anchors of morphological operators
and algebraic openings. This concept is placed in context and the chapter
forms a self-contained account of this particular aspect of mathematical
morphology.

The volume ends with another new subject, time lenses for optical
transmission systems, by D. Yang, S. Kumar and H. Wang. Spatial imaging
has a perfect analogy in the time domain and this is exploited for temporal
filtering. The authors introduce us to the subject before going more deeply
into the possible ways of pursuing this analogy.

As always, I thank the authors for all the trouble they have taken to make
their work accessible to a wide readership.

Peter W. Hawkes
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2 Péter Dombi

1. INTRODUCTION

It was shown recently that ultrashort, intense laser pulses are particularly
well suited for the generation of electron and other charged particle
beams both in the relativistic and the nonrelativistic intensity regimes
of laser-solid interactions (Irvine, Dechant, & Elezzabi, 2004; Leemans
et al., 2006, and references therein). One method to generate well-behaved,
optically accelerated electron beams with relatively low-intensity light pulses
is surface plasmon polariton (SPP)-enhanced electron acceleration. Due
to the intrinsic phenomenon of the enhancement of the SPP field (with
respect to the field of the SPP-generating laser pulse), substantial field
strength can be created in the vicinity of metal surfaces with simple,
high-repetition-rate, unamplified laser sources. This results in both SPP-
enhanced electron photoemission and electron acceleration in the SPP field.
SPP-enhanced photoemission was demonstrated in several experimental
publications. Typical photocurrent enhancement values ranged from x50 to
%3500 achieved solely by SPP excitation (Tsang, Srinivasan-Rao, & Fischer,
1991).

In addition to SPP-enhanced photoemission, the electrons in the vicinity
of the metal surface can undergo significant cycle-by-cycle acceleration in
the evanescent plasmonic field. This phenomenon, termed SPP-enhanced
electron acceleration, was discovered recently and was experimentally
demonstrated to be suitable for the production of relatively high-energy,
quasi-monoenergetic electron beams with the usage of simple femtosecond
lasers (Irvine et al., 2004; Kupersztych, Monchicourt, & Raynaud, 2001;
Zawadzka, Jaroszynski, Carey, & Wynne, 2001). In this scheme, the
evanescent electric field of SPPs accelerates photo-emitted electrons away
from the surface. This process can be so efficient that multi-keV kinetic
energy levels can be reached without external direct current (DC) fields
(Irvine and Elezzabi, 2005; Irvine et al., 2004). This method seems particularly
advantageous for the generation of well-behaved femtosecond electron
beams that can later be used for infrared pump/electron probe methods,
such as ultrafast electron diffraction or microscopy (Lobastov, Srinivasan, &
Zewail, 2005; Siwick, Dwyer, Jordan, & Miller, 2003). These time-resolved
methods using electron beams can gain importance in the future by enabling
both high spatial and high temporal resolution material characterization at
the same time. They will become particularly interesting if the attosecond
temporal resolution domain becomes within reach with electron diffraction
and microscopy methods, as suggested recently (Fill, Veisz, Apolonski,
& Krausz, 2006; Stockman, Kling, Krausz, & Kleineberg, 2007; Varré and
Farkas, 2008). Moreover, studying the spectral properties of femtosecond
electron beams has the potential to reveal ultrafast excitation dynamics in
solids and to provide the basis for a single-shot measurement tool of the
carrier-envelope (CE) phase (or the optical waveform) of ultrashort laser
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pulses, as we suggested recently (Dombi and Récz, 2008a; Irvine, Dombi,
Farkas, & Elezzabi, 2006). Other waveform-sensitive laser-solid interactions
that have already been demonstrated (Apolonski et al., 2004; Dombi et al.,
2004; Fortier et al., 2004; Miicke et al., 2004) suffer from low experimental
contrast; therefore, it is necessary to look for higher-contrast tools for direct
phase measurement.

Motivated by these possibilities, it was shown numerically (and also
partly experimentally) that surface plasmonic electron sources can be
ideally controlled with ultrashort laser pulses so that they deliver highly
directional, monoenergetic electron beams readily synchronized with the
pump pulse (Dombi and Racz, 2008a; Irvine et al., 2004, 2006). We developed
a simple semiclassical approach for the simulation of this process analogous
to the three-step model of high harmonic generation (Corkum, 1993;
Kulander, Schafer, & Krause, 1993). In this chapter, we review the basic
elements of this model and prove that it delivers the same results as a
much more complicated treatment of the problem based on the rigorous,
but computationally time-consuming, solution of Maxwell’s equations.
Results gained with this latter method showed very good agreement with
experimental electron spectra (Irvine, 2006). We also provide new insight into
the spatiotemporal dynamics of SPP-enhanced electron acceleration, which
is also important if one intends to realize adaptive emission control methods
(Aeschlimann et al., 2007).

2. ELECTRON EMISSION AND PHOTOACCELERATION IN SURFACE
PLASMON FIELDS

2.1. Emission Mechanisms

Laser-induced electron emission processes of both atoms and solids
are determined by the intensity of the exciting laser pulse. At low
intensities where the field of the laser pulse is not sufficient to distort the
potential significantly, multiphoton-induced processes dominate at visible
wavelengths. These nonlinear processes can be described by a perturbative
approach in this case. Light-matter interaction is predominantly non-
adiabatic and it is governed by the evolution of the amplitude of the laser
field, or, in other words, the intensity envelope of the laser pulse.

Tunneling or field emission takes over at higher intensities. This emission
regime is determined by the fact that the potential is distorted by the laser
field to an extent that it allows tunneling (or, at even higher intensities,
above-barrier detachment) of the electron through the modulated potential
barrier, the width of which is determined by the laser field strength. The
interaction is determined by the instantaneous field strength of the laser
pulse; the photocurrent generated in this manner follows the field evolution



