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What's New in the
Ninth Edition-

The ninth edition continues to streamline both the text materials and the software
support providing a broad focus on algorithmic and practical implementation of
Operations Research techniques.

For the first time in this book, the new Section 3.7 provides a comprehensive
(math-free) framework of how the different LP algorithms (simplex, dual sim-
plex, revised simplex, and interior point) are implemented in commercial codes
(e.g., CPLEX and XPRESS) to provide the computational speed and accuracy
needed to solve very large problems.

The new Chapter 2 of volume two covers efficient heuristics/metaheuristics
designed to find good approximate solutions for integer and combinatorial prog-
ramming problems. The need for heuristics/metaheuristics is in recognition of the
fact that the performance of the exact algorithms has been less than satisfactory
from the computational standpoint.

The new Chapter 3 of volume two is dedicated to the important traveling salesperson
problem. The presentation includes a variety of applications and the development
of exact and heuristic solution algorithms.

All the algorithms in the new Chapters 2 and 3 of volume two are coded in Excel
in a manner that permits convenient interactive experimentation with the models.
All detailed AMPL models have been moved to Appendix C to complement the

AMPL syntactical rules presented in the appendix. The models are cross-referenced
opportunely in the book.

Numerous new problems have been added throughout the book.
The TORA software has been updated.
In keeping with my commitment to maintain a reasonable count of printed

pages, I found it necessary to move some material to the website, including the
AMPL appendix.

*(BEEFR) (M) JFBRIRE A, BCRIFA BN, BRI AR BT T AR
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What Is Operatﬂ»ns Res%al'Cii |

INTRODUCTION

The first formal activities of Operations Research (OR) were initiated in England
during World War II, when a team of British scientists set out to make scientifically
based decisions regarding the best utilization of war materiel. After the war, the ideas
advanced in military operations were adapted to improve efficiency and productivity
in the civilian sector.

This chapter introduces the basic terminology of OR, including mathematical
modeling, feasible solutions, optimization, and iterative computations. It stresses that
defining the problem correctly is the most important (and most difficult) phase of
practicing OR. The chapter also emphasizes that, while mathematical modeling is
a cornerstone of OR, unquantifiable factors (such as human behavior) must be
accounted for in the final decision. The book presents a variety of applications using
solved examples and chapter problems. In particular, Chapter 26 on the website is
entirely devoted to the presentation of fully developed case analyses.

OPERATIONS RESEARCH MODELS

Imagine that you have a 5-week business commitment between Fayetteville (FYV) and
Denver (DEN). You fly out of Fayetteville on Mondays and return on Wednesdays.
A regular round-trip ticket costs $400, but a 20% discount is granted if the round-trip
dates span a weekend. A one-way ticket in either direction costs 75% of the regular
price. How should you buy the tickets for the 5-week period?
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We can look at the situation as a decision-making problem whose solution
requires answering three questions:

1. What are the decision alternatives?
2. Under what restrictions is the decision made?
3. What is an appropriate objective criterion for evaluating the alternatives?

Three plausible alternatives come to mind:

1. Buy five regular FYV-DEN-FYV for departure on Monday and return on
Wednesday of the same week.

2. Buyone FYV-DEN, four DEN-FYV-DEN that span weekends, and one DEN-FYV.

3. Buy one FYV-DEN-FYYV to cover Monday of the first week and Wednesday of

the last week and four DEN-FYV-DEN to cover the remaining legs. All tickets in
this alternative span at least one weekend.

The restriction on these options is that you should be able to leave FYV on Monday
and return on Wednesday of the same week.

An obvious objective criterion for evaluating the proposed alternative is the price
of the tickets. The alternative that yields the smallest cost is the best. Specifically, we have

5 X 400 = $2000

Alternative 1 cost

Alternative 2 cost = .75 X 400 + 4 X (.8 X 400) + .75 X 400 = $1880

Alternative 3cost =5 X (.8 X 400) = $1600

Alternative 3 is the best because it is the cheapest.

Though the preceding example illustrates the three main components of an OR
model—alternatives, objective criterion, and constraints—situations differ in the
details of how each component is developed and how the resulting model is solved.
To illustrate this point, consider forming a maximum-area rectangle out of a piece of
wire of length L inches. What should be the best width and height of the rectangle?

In contrast with the tickets example, the number of alternatives in the present
example is not finite; namely, the width and height of the rectangle can assume an
infinite number of values because they are continuous variables. To formalize this
observation, the alternatives of the problem are identified by defining the width and
height algebraically as

w = width of the rectangle in inches
h =height of the rectangle in inches

Based on these definitions, the restrictions of the situation can be expressed verbally as

1. Width of rectangle + Height of rectangle = Half the length of the wire
2. Width and height cannot be negative
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These restrictions are translated algebraically as

1. 2(w+ h) =L
2. w=0,h=0

The only remaining component now is the objective of the problem; namely,
maximization of the area of the rectangle. Let z be the area of the rectangle, then the
complete model becomes

Maximize z = wh
subject to
2(w + h) =L
w,h =0

Using differential calculus, the best solution of this model is w = & = %, which calls
for constructing a square shape.

Based on the preceding two examples, the general OR model can be organized in
the following general format:

Maximize or minimize Objective Function
subject to

Constraints

A solution of the model is feasible if it satisfies all the constraints. It is optimal if,
in addition to being feasible, it yields the best (maximum or minimum) value of the
objective function. In the tickets example, the problem considers three feasible
alternatives, with the third alternative yielding the optimal solution. In the rectangle
problem, a feasible alternative must satisfy the condition w + A = é—‘ , where w and &
are nonnegative variables. This definition leads to an infinite number of feasible
solutions and, unlike the tickets problem, which uses simple price comparison, the
optimum solution is determined by using differential calculus.

Though OR models are designed to “optimize” a specific objective criterion
subject to a set of constraints, the quality of the resulting solution depends on the
completeness of the model in representing the real system. Take, for example, the
tickets model. If all the dominant alternatives for purchasing the tickets are not iden-
tified, then the resulting solution is optimum only relative to the choices represented
in the model. To be specific, if alternative 3 is left out of the model, then the resulting
“optimum” solution would call for purchasing the tickets for $1880, which is
a suboptimal solution. The conclusion is that “the” optimum solution of a model is
best only for that model. If the model happens to represent the real system reason-
ably well, then its solution is optimum also for the real situation.



4

Chapter

1 What Is Operations Research?

PROBLEM SET 1.2A'

1.

2.
3.

4.

%5,

6.

7.

In the tickets example, identify a fourth feasible alternative.

(a) Define an infeasible alternative.

(b) Identify a fourth feasible alternative and determine its cost.

In the rectangle problem, identify three feasible solutions, and determine which one is better.

Determine the optimal solution of the rectangle problem (Hint: Use the constraint to
express the objective function in terms of one variable, then use differential calculus.)

Amy, Jim, John, and Kelly are standing on the east bank of a river and wish to cross to
the west side using a canoe. The canoe can hold at most two people at a time. Amy, being
the most athletic, can row across the river in 1 minute. Jim, John, and Kelly would take
3,6, and 9 minutes, respectively. If two people are in the canoe, the slower person dictates
the crossing time. The objective is for all four people to be on the other side of the river
in the shortest time possible.

(a) Identify at least two feasible plans for crossing the river (remember, the canoe is
the only mode of transportation, and it cannot be shuttled empty).
(b) Define the criterion for evaluating the alternatives.

*(¢) What is the smallest time for moving all four people to the other side of the river?
In a baseball game, Jim is the pitcher and Joe is the batter. Suppose that Jim can
throw either a fast or a curve ball at random. If Joe correctly predicts a curve ball,
he can maintain a .400 batting average, else if Jim throws a curve ball and Joe
prepares for a fast ball, his batting average is kept down to .200. On the other hand,
if Joe correctly predicts a fast ball, he gets a .250 batting average, else his batting
average is only .125.

(a) Define the alternatives for this situation.

(b) Define the objective function for the problem, and discuss how it differs from
the familiar optimization (maximization or minimization) of a criterion.
During the construction of a house, six joists of 24 feet each must be trimmed

to the correct length of 23 feet. The operations for cutting a joist involve the
following sequence:

Operation Time (seconds)
1. Place joist on saw horses 15
2. Measure correct length (23 feet) ]
3. Mark cutting line for circular saw 5
4. Trim joist to correct length 20
S. Stack trimmed joist in a designated area 20

Three persons are involved: Two loaders must work simultaneously on operations 1, 2,
and 5, and one cutter handles operations 3 and 4. There are two pairs of saw horses on
which untrimmed joists are placed in preparation for cutting, and each pair can hold
up to three side-by-side joists. Suggest a good schedule for trimming the six joists.

A (two-dimensional) pyramid is constructed in four layers: The bottom layer consists of
(equally-spaced) dots 1, 2, 3 and 4, The next layer includes dots 5, 6, and 7; the following

! Asterisk designates problems whose solution is given in Appendix B.
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layer has dots 8 and 9; and the top layer has dot 10. You want to invert the pyramid
(bottom layer has one dot and top layer has four) by moving the dots around.

(a) Identify two feasible solutions.

(b) Determine the smallest number of moves needed to invert the triangle.2

8. You have five chains each consisting of four solid links. You need to make a bracelet
by connecting all five chains. It costs 2 cents to break a link and 3 cents to resolder it.
(a) Identify two feasible solutions and evaluate them.

(b) Determine the cheapest cost for making the bracelet.

9. The squares of a rectangular board of 11 rows and 9 columns are numbered sequentially
1 through 99 with a hidden monetary reward between 0 and 50 dollars assigned to each
square. A game using the board requires the player to choose a square by selecting any
two-digits and then subtracting the sum of its two digits from the selected number. The
player then receives the reward assigned to the selected square. What monetary values
should be assigned to the 99 squares to minimize the player’s reward (regardless of how
many times the game is repeated)? To make the game interesting, the assignment of $0 to
all the squares is not an option.

SOLVING THE OR MODEL

In OR, we do not have a single general technique to solve all mathematical models that
can arise in practice. Instead, the type and complexity of the mathematical model
dictate the nature of the solution method. For example, in Section 1.2 the solution of the
tickets problem requires simple ranking of alternatives based on the total purchasing
price, whereas the solution of the rectangle problem utilizes differential calculus to
determine the maximum area.

The most prominent OR technique is linear programming. It is designed for
models with linear objective and constraint functions. Other techniques include integer
programming (in which the variables assume integer values), dynamic programming
(in which the original model can be decomposed into smaller more manageable
subproblems), network programming (in which the problem can be modeled as a
network), and nonlinear programming (in which functions of the model are nonlinear).
These are only a few among many available OR tools.

A peculiarity of most OR techniques is that solutions are not generally obtained
in (formula-like) closed forms. Instead, they are determined by algorithms. An
algorithm provides fixed computational rules that are applied repetitively to the prob-
lem, with each repetition (called iteration) moving the solution closer to the optimum.
Because the computations associated with each iteration are typically tedious and
voluminous, it is imperative that these algorithms be executed on the computer.

Some mathematical models may be so complex that it becomes impossible to
solve them by any of the available optimization algorithms. In such cases, it may be
necessary to abandon the search for the optimal solution and simply seek a good
solution using heuristics/metaheuristics or rules of thumb.

ZProblems 7 and 8 are adapted from Bruce Goldstein, Cognitive Psychology: Mind, Research, and Everyday
Experience, Wadsworth Publishing, 2005.
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QUEUING AND SIMULATION MODELS

Queuing and simulation deal with the study of waiting lines. They are not optimization
techniques; rather, they determine measures of performance of waiting lines, such as
average waiting time in queue, average waiting time for service, and utilization of
service facilities.

Queuing models utilize probability and stochastic models to analyze waiting
lines, and simulation estimates the measures of performance by imitating the behavior
of the real system. In a way, simulation may be regarded as the next best thing to
observing a real system. The main difference between queuing and simulation is that
queuing models are purely mathematical and hence are subject to specific assumptions
that limit their scope of application. Simulation, on the other hand, is flexible and can
be used to analyze practically any queuing situation.

The use of simulation is not without drawbacks. The process of developing
simulation models is costly in both time and resources. Moreover, the execution of
simulation models, even on the fastest computer, is usually slow.

ART OF MODELING

The illustrative models developed in Section 1.1 are exact representations of real
situations. This is a rare occurrence in OR, as the majority of applications usually
involve (varying degrees of) approximations. Figure 1.1 depicts the levels of
abstraction that characterize the development of an OR model. We abstract the
assumed real world from the real situation by concentrating on the dominant
variables that control the behavior of the real system. The model expresses in an
amenable manner the mathematical functions that represent the behavior of the
assumed real world.

To illustrate levels of abstraction in modeling, consider the Tyko Manufacturing
Company, where a variety of plastic containers are produced. When a production
order is issued to the production department, necessary raw materials are acquired

FIGURE 1.1

Levels of abstraction in model development

Assumed Real World - ~ = Model




