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Abstract

As the first line of defense, innate immunity plays an important role in protecting the
host against pathogens. Innate lymphoid cells (ILCs) are emerging as important effector
cells in the innate immune system and the cell type that regulate immune and tissue
homeostases. Group 2 ILCs (ILC2s) are a subset of ILCs and are characterized by their
capacity to produce large quantities of type 2 cytokines and certain tissue growth fac-
tors. In animal models, lung ILC2s are involved in allergic airway inflammation induced
by exposure to allergens even in the absence of CD4™ T cells and are likely responsible
for tissue repair and recovery after respiratory virus infection. ILC2s are also identified in
various organs in humans, and the numbers are increased in mucosal tissues from
patients with allergic disorders. Further investigations of this novel cell type will provide
major conceptual advances in our understanding of the mechanisms of asthma and
allergic diseases.

1. INTRODUCTION

Innate immunity plays an important role in protecting the host against
pathogens such as bacteria, viruses, and parasites. Innate lymphoid cells

Advances in Immunology, Volume 124 © 2014 Elsevier Inc. 1
ISSN 0065-2776 All rights reserved.
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(ILCs) are emerging as important effector cells of the innate immune system
that are involved in pathogen clearance, lymphoid organogenesis, and tissue
remodeling. These cells are derived from a common lymphoid progenitor,
exhibit lymphoid morphology, lack rearranged antigen receptors, and
express no conventional lymphocyte or dendritic cell (DC) phenotypic
markers.

Based on their cytokine production profiles and the transcription factors
utilized for their development and functions, ILCs have been recently
categorized into three groups: group 1 ILCs (ILCls), group 2 ILCs
(ILC2s), and group 3 ILCs (ILC3s) (Spits et al., 2013). ILC1s comprise
IFN-y-secreting ILCs that likely use transcription factor T-bet for lineage
commitment. ILC2s comprise type 2 cytokine-producing ILCs that require
transcription factor GATA3 for their development and function. ILC3s
comprise 1L-17- and/or IL-22-producing ILCs that are dependent on tran-
scription factor RORyt for lineage specification. In this review, we will spe-
cifically focus on ILC2s, especially ILC2s in the lung, and discuss their
functional roles in allergic airway diseases.

2. GENERAL FEATURES OF ILC2s

ILC2s are considered to be the counterpart of Th2-type CD4 " T cells
in the adaptive immune system. They characteristically produce type 2 cyto-
kines, such as IL-5 and IL-13. ILC2s were first described in mice in the early
2000s as non-B/non-T cells that secrete IL-5 and IL-13 in response to [L-25
(Fort et al., 2001; Hurst et al., 2002). A subsequent study showed that these
IL-25-responsive ILCs play important roles in Nippostrongylus brasiliensis
worm expulsion (Fallon et al., 2006). In 2010, ILC2s were characterized
in detail by three groups, and they were independently named as natural
helper cells, nuocytes, and innate helper 2 cells (Moro et al., 2010; Neill
et al., 2010; Price et al., 2010). They were later named as [LC2s in a con-
sensus report (Spits et al., 2013).

Generally, mouse ILC2s are negative for classical cell surface markers for
T cells, B cells, natural killer (NK) cells, myeloid cells, and DCs, including
CD3, CD4, CD8, CD5, CD19, B220, TCR, NK1.1, Ter119, Gr-1, Mac-1,
CD1l1c, CD14, and CD16/32; thus, they are designated lineage-negative
(Lin™). Mouse ILC2s do express ST2 (IL-33 receptor), CD127 (IL-7R
a-chain), ICOS, CD117 (c-Kit), Thy1, IL-17RB (IL-25 receptor), CD44,
and CD25 (IL-2R oa-chain). Mouse ILC2s are widely distributed in the
tissues, including fat-associated lymphoid clusters (FALC), mesenteric and
mediastinal lymph nodes, liver, spleen, intestine, bone marrow, visceral
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adipose tissue, and lung. Developmentally, ILC2s arise from common lym-
phoid precursors in the bone morrow and require IL-2 receptor common
y-chain (cy), transcription factor inhibitor of DNA binding 2 (Id2), nuclear
orphan receptor ROR@, and transcription factor GATA3 for their develop-
ment and differentiation (Hoyler et al., 2012; Moro et al., 2010; Wong
etal, 2012; Yang, Saenz, Zlotoff, Artis, & Bhandoola, 2011). Mature mouse
[LC2sare activated to produce type 2 cytokines, including IL-4, IL-5, IL-9, and
[L-13, in response to the cytokines, such as IL-25, [L-33, and thymic stromal
lymphopoietin (TSLP; Kim et al., 2013; Mjosberg et al., 2012; Moro et al.,
2010; Neill etal., 2010; Price et al., 2010), that are derived from epithelial cells
and certain immune cells.

Initial studies on mouse ILC2s demonstrated their critical roles in innate
immunity against a variety of organisms. For example, ILC2s play critical
roles in protective immunity against helminth infection (Moro et al.,
2010; Neill etal., 2010; Price et al., 2010), in influenza-induced lung inflam-
mation and airway hyperreactivity (AHR; Chang et al., 2011), and in respi-
ratory epithelial repair after influenza infection (Monticelli et al., 2011).
ILC2s and their cytokines also play pathological roles in allergen-induced
airway inflammation (Barlow et al., 2012; Bartemes et al., 2012; Halim,
Krauss, Sun, & Takei, 2012; Kim et al., 2012) and skin inflammation
(Kim et al., 2013; Roediger et al., 2013). Some homeostatic and tissue rem-
odeling roles for ILC2s have been reported, including eosinophil homeosta-
sis (Molofsky et al., 2013; Nussbaum et al., 2013) and hepatic fibrosis
(McHedlidze et al., 2013).

Multipotent progenitor type 2 (MPP¥P*?) cells are likely a special subset of
ILC2s. These cells were originally discovered in the gut-associated lymphoid
tissue of [L-25-treated mice (Saenz et al., 2010); they are also found in blood,
lymph nodes, lung, and the peritoneal cavity (Saenz et al., 2013). Unlike other
ILC2s, MPP**? cells display a multipotent capacity to differentiate into mono-
cyte/macrophage and granulocyte lineages (Saenz et al., 2010). In addition,
MPP™P*2 cells can present antigens to T cells and promote Th2-type differen-
tiation. A recent study demonstrated that MPP®P* cells are predominantly acti-
vated by IL-25, but not IL-33, and exhibit distinct transcriptional profiles and
developmental requirements as compared to ILC2s (Saenz et al., 2013),
suggesting that MPP¥P*? cells and classical ILC2s are distinct subsets.

3. LUNG ILC2s AT RESTING CONDITION

ILC2s are normally resident in the lungs of naive animals. In the lungs
of naive mice, ILC2s are Lin~ and generally express various cell surface
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markers, including CD117, CD122 (IL-2R B-chain), CD25, CD127,
Ly5.2, Thyl, Sca-1, ST2, CD69, CD9, CD38, MHC class II, CD44, and
ICOS (Bartemes et al., 2012; Halim et al., 2012; Monticelli et al., 2011;
Price et al., 2010). Some heterogeneity in the expression of cell surface mol-
ecules is also observed among the studies, likely due to differences in the
experimental models and housing conditions of the animals. Combinations
of these cell markers are used to identify and isolate ILC2s among the Lin™
populations in the lung of naive mice (Fig. 1.1A). Importantly, lung ILC2s
are present in RagZ-/_ mice and ST2™'~ mice (i.e., deficient in IL-33R),
suggesting that they do not require TCR recombination or IL-33 for their
development. In contrast, mice that are deficient in IL-2 receptor cy, IL-7R
a-chain, or transcription regulator Id2 lack mature ILC2s, consistent with
their dependency on IL-7 and Id2 for their development.

Lung ILC2s are a rare cell population. In wild-type C57BL/6 mice, lung
ILC2s represent only 0.25-1% of total live cells in the lung. ILC2s are
located in collagen-rich regions close to the confluence of medium-sized
blood vessels and airways, but not in alveolar areas of the lung
(Nussbaum et al., 2013). Resting lung ILC2s have morphology similar to
that of resting lymphocytes, with no apparent intracellular granule structures
(Bartemes et al., 2012). However, once they are stimulated with IL-33, lung
ILC2s increase in size and display pronounced endoplasmic reticulum and
Golgi apparatus (Fig. 1.1C).

Resting lung ILC2s also display a gene expression profile distinct from
those of macrophages, DCs, CD4" T cells, NK cells, y8T cells, and regula-
tory T cells (Treg) in the lung. More specifically, ILC2s show high mRNA
expression levels of Gata3, Rora, Cd69, I12ra, 112vg, 114ra, 117r, 1117+b, 111411,
115, and Il13 (Halim et al., 2012). IL-5 and IL-13 transcripts were also
detected in resting lung ILC2s in cytokine reporter mice (Ikutani et al.,
2012; Nussbaum et al., 2013; Price et al., 2010). At the protein level, ELISAs
could not detect IL-5 and IL-13 in the culture supernatants of naive and rest-
ing lung ILC2s (Bartemes et al., 2012; Halim et al.,, 2012). However,
ELISPOT assays revealed IL-5-producing lung ILC2s when cultured in
medium alone (Nussbaum et al., 2013), suggesting constitutive but minimal
production of IL-5 by resting ILC2s. Interestingly, this constitutive expres-
sion of [L-5 by ILC2s may play a role in regulating eosinophil homeostasis in
various organs (Molofsky et al., 2013; Nussbaum et al., 2013). Some contro-
versies exist as to the expression of IL-4. Although gene microarray analysis
shows no or low expression levels of I14 (Halim et al., 2012), IL-4 transcripts
were found in ILC2s in the lungs of [L-4 reporter mice (Price et al., 2010).
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Figure 1.1 Lung ILC2s respond vigorously to IL-33 and produce a large quantity of IL-5
and IL-13 in vitro. (A) Gating strategy and identification of ILC2s in lung single-cell sus-

pensions from naive BALB/c mice. (B) Four populations of lung cells, including Lin*

cells,

Lin"CD257CD44~ cells, Lin~ CD25 CD44" cells, and Lin CD25*CD44" cells (i.e., ILC2s),
were isolated from naive BALB/c mice by FACS sorting. Sorted and unsorted lung cells
were cultured with medium alone or with IL-33, and the levels of cytokines in the super-
natants were measured by ELISA. (C) Morphology of lung ILC2s. Lung ILC2s were cul-
tured with medium alone or IL-33 and examined under electron microscopy. Original
magnifications: 25,000 x (medium alone, left) and 12,000 x (IL-33, right). *p < 0.05 com-

pared to medium.
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4., REGULATION AND FUNCTION OF LUNG ILC2s

Exposure of lung ILC2s to cytokines and other inflammatory media-
tors rapidly activates their effector functions. For example, IL-33 activates
lung ILC2s to produce large quantities of IL-5 and IL-13 in witro
(Bartemes etal., 2012; Halim et al., 2012; Fig. 1.1B). While IL-25 and TSLP
do not activate lung ILC2s by themselves, they synergistically enhance cyto-
kine production by ILC2s (Halim et al., 2012). IL-25 and IL-33 also pro-
mote expansion and/or migration of lung ILC2s, as intraperitoneal or
intranasal administration of IL-25 or IL-33 increased ILC2 cell numbers
in lung tissues and draining lymph nodes in vivo (Barlow et al.,, 2012;
Price et al., 2010). IL-33 is likely more potent than IL-25 in inducing
ILC2 cell expansion (Barlow et al., 2013). While stimulatory eftects of TSLP
on lung ILC2s have not been demonstrated, TSLP has been shown to acti-
vate skin [LC2s (Kim et al., 2013), suggesting the specialization of ILC2s in
different organs.

Lung ILC2 activities can also be regulated by IL-2-family cytokines.
In vitro, neither IL-2 nor IL-7 alone induces significant IL-5 and IL-13 pro-
duction by ILC2s. However, these two cytokines synergistically enhance
IL-33- and IL-25-induced proliferation and type 2 cytokine production
by lung ILC2s (Bartemes et al., 2012; Halim et al, 2012; Monticelli
et al., 2011). Interestingly, IL-2 itself stimulated lung CD25" ILCs, which
have phenotypes similar to those of ILC2s, to produce type 2 cytokines and
IL-9 in culture (Wilhelm et al., 2011). IL-9 produced by ILCs may have a
positive feedback effect on ILCs, since lung ILCs cultured with IL-9
increased the production of type 2 cytokines (Wilhelm et al., 2011). IL-9
might enhance ILC2 function by upregulating the anti-apoptotic protein
BCL-3 in lung ILC2s, thereby promoting ILC2 survival (Turer et al.,
2013). In addition, TL1A, a TNF superfamily member, has also been
reported to induce ILC2 cell expansion (Yu et al., 2013).

Besides cytokines, lung ILC2s can be regulated by lipid mediators that
are generated during allergic inflaimmation. In vitro, leukotriene Dy
(LTD,) potently stimulates mouse lung ILC2s to produce not only IL-5
and IL-13 but also a large amount of IL-4; IL-4 is not generally produced
by ILC2s when stimulated with IL-33 (Doherty et al., 2013). Intranasal
administration of LTD, led to the expansion of IL-5-producing ILC2s
in the lung in vivo. Furthermore, LTD, potentiated the proliferation and
the accumulation of ILC2s in mice exposed to the fungus Alternaria



