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PREFACE TO THE THIRD EDITION

This book studies the dynamics of iterated holomorphic mappings from a
Riemann surface to itself, concentrating on the classical case of rational
maps of the Riemann sphere. It is based on introductory lectures given at
Stony Brook during the fall term of 1989-90 and in later years. I am grateful
to the audiences for a great deal of constructive criticism and to Bodil Bran-
ner, Adrien Douady, John Hubbard, and Mitsuhiro Shishikura, who taught
me most of what I know in this field. Also, I want to thank a number of
individuals for their extremely helpful criticisms and suggestions, especially
Adam Epstein, Rodrigo Perez, Alfredo Poirier, Lasse Rempe, and Saeed
Zakeri. Araceli Bonifant has been particularly helpful in the preparation of
this third edition.

There have been a number of extremely useful surveys of holomorphic
dynamics over the years. See the textbooks by Devaney [1989], Beardon
[1991], Carleson and Gamelin [1993], Steinmetz [1993], and Berteloot and
Mayer [2001], as well as expository articles by Brolin [1965], Douady [1982-
83, 1986, 1987], Blanchard [1984], Lyubich [1986], Branner [1989], Keen
[1989], Blanchard and Chiu [1991], and Eremenko and Lyubich [1990]. (See
the list of references at the end of the book.)

This subject is large and rapidly growing. These lectures are intended
to introduce the reader to some key ideas in the field, and to form a basis for
further study. The reader is assumed to be familiar with the rudiments of
complex variable theory and of 2-dimensional differential geometry, as well
as some basic topics from topology. The necessary material can be found
for example in Ahlfors [1966], Hocking and Young [1961], Munkres [1975],
Thurston [1997], and Willmore [1959]. However, two big theorems will be
used here without proof, namely the Uniformization Theorem in §1 and the
existence of solutions for the measurable Beltrami equation in Appendix F.
(See the references in those sections.)

The basic outline of this third edition has not changed from previous
editions, but there have been many improvements and additions. A brief
historical survey has been added in §4.1, the definition of Latteés map has
been made more inclusive in §7.4, the Ecalle-Voronin theory of parabolic
points is described in §10.12, the résidu itératif is studied in §12.9, the
material on two complex variables in Appendix D has been expanded, and
recent results on effective computability have been added in Appendix H.
The list of references has also been updated and expanded.

John Milnor
Stony Brook, August 2005

vii
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RIEMANN SURFACES
§1. Simply Connected Surfaces

The first three sections will present an overview of some background mate-
rial.

If V c C isan open set of complex numbers, a function f:V — C is
called holomorphic (or “complex analytic”) if the first derivative

2o f(2) = Jm (f(z+h) - f()/h

is defined and continuous as a function from V to C, or equivalently if
f has a power series expansion about any point 29 € V' which converges
to f in some neighborhood of 2. (See, for example, Ahlfors [1966].)
Such a function is conformal if the derivative f’(2) never vanishes. Thus
our conformal maps must always preserve orientation. It is univalent (or
schlicht) if it is conformal and one-to-one.

By a Riemann surface S we mean a connected complex analytic man-
ifold of complex dimension 1. Thus S is a connected Hausdorff space.
Furthermore, in some neighborhood U of an arbitrary point of S we can
choose a local uniformizing parameter (or “coordinate chart”) which maps
U homeomorphically onto an open subset of the complex plane C, with
the following property: In the overlap U NU’ between two such neighbor-
hoods, each of these local uniformizing parameters can be expressed as a
holomorphic function of the other.

Figure 1. Overlapping coordinate neighborhoods.

1



2 RIEMANN SURFACES

By definition, two Riemann surfaces S and S’ are conformally isomor-
phic (or biholomorphic ) if and only if there is a homeomorphism from S
onto S’ which is holomorphic in terms of the respective local uniformizing
parameters. (It is an easy exercise to show that the inverse map S’ — S
must then also be holomorphic.) In the special case S = S’ such a confor-
mal isomorphism S — S is called a conformal automorphism of S.

Although there are uncountably many conformally distinct Riemann
surfaces, there are only three distinct surfaces in the simply connected case.
(By definition, the surface S is simply connected if every map from a circle
into S can be continuously deformed to a constant map. Compare §2.)
The following result is due to Poincaré and to Koebe.

Theorem 1.1 (Uniformization Theorem). Any simply con-
nected Riemann surface is conformally isomorphic either

(a) to the plane C consisting of all compler numbers =z
=z + iy,

(b) to the open disk D C C  consisting of all z with
|22 =22 +y% <1, or

(c) to the Riemann sphere C consisting of C together with a
point at infinity, using ¢ = 1/z as local uniformizing param-
eter in a neighborhood of the point at infinity.

This is a generalization of the classical Riemann Mapping Theorem.
We will refer to these three cases as the Euclidean, hyperbolic, and spherical
cases, respectively. (Compare §2.) The proof of Theorem 1.1 is nontrivial
and will not be given here. However, proofs may be found in Koebe [1907],
Ahlfors [1973], Beardon [1984], Farkas and Kra [1980], Nevanlinna [1967],
and in Springer [1957]. (See also Fisher, Hubbard, and Wittner [1988].)
By assuming this result, we will be able to pass more quickly to interesting
ideas in holomorphic dynamics.

The Open Disk D. For the rest of this section, we will discuss these
three surfaces in more detail. We begin with a study of the unit disk D.

Lemma 1.2 (Schwarz Lemma). If f: D — D is a holo-
morphic map with f(0) = 0, then the derivative at the origin
satisfies |f'(0)| < 1. If equality holds, |f'(0)| =1, then f isa
rotation about the origin. That is, f(z) = cz for some constant
c= f'(0) on the unit circle. On the other hand, if |f'(0)| < 1,
then |f(2)| < |z| forall z#0.

(The Schwarz Lemma was first proved, in this generality, by Carathéo-
dory.)
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Remarks. If |f(0)] = 1, it follows that f is a conformal automor-
phism of the unit disk. But if |[f/(0)] < 1 then f cannot be a conformal
automorphism of I, since the composition with any ¢ : (D,0) — (D,0)
would have derivative ¢(0)f'(0) # 1. The example f(z) = z? shows that
f may map D onto itself even when |f(z)| < |z| forall z#0 in D.

Proof of Lemma 1.2. We use the Maximum Modulus Principle, which
asserts that a nonconstant holomorphic function cannot attain its maximum
absolute value at any interior point of its region of definition. First note
that the quotient function ¢(z) = f(z)/z is well defined and holomorphic
throughout the disk D, as one sees by dividing the local power series for f
by z. Since |g¢(z)| < 1/r when |z| = r < 1, it follows by the Maximum
Modulus Principle that |g(2)| < 1/r for all z in the disk |z| < r. Since
this is true for all » — 1, it follows that |g(z)| <1 for all z € . Again by
the Maximum Modulus Principle, we see that the case |g(z)| = 1, for some
z in the open disk, can occur only if the function ¢(z) is constant. If we
exclude this case f(z)/z = ¢, then it follows that |q(2)| = |f(z)/2| < 1 for
all z # 0, and similarly that |¢(0)| = |f'(0)] <1. O

Here is a useful variant statement.

Lemma 1.2’ (Cauchy Derivative Estimate). If f maps
the disk of radius r about zy into some disk of radius s, then

|f'(z0)| < s/r.

Proof. This follows easily from the Cauchy integral formula (see, for
example, Ahlfors [1966]): Set g(z) = f(z + z0) — f(20), so that g maps
the disk D, centered at the origin to the disk DDy centered at the origin.
Then

1
fa) = g0 = 54
Z|=ry

21

g(z) dz
22

for all r; < r, and the conclusion follows easily. 0O

(An alternative proof, based on the Schwarz Lemma, is described in
Problem 1-a at the end of this section. With an extra factor of 2 on the right,
this inequality would follow immediately from Lemma 1.2 simply by linear
changes of variable, since the target disk of radius s must be contained in
the disk of radius 2s centered at the image f(2q).)

As an easy corollary, we obtain the following.
Theorem 1.3 (Liouville Theorem). A bounded function f

which is defined and holomorphic everywhere on C must be con-
stant.
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For in this case we have s fixed but r arbitrarily large, hence f’ must
be identically zero. 0O

As another corollary, we see that our three model surfaces really are
distinct. There are natural inclusion maps D — C — C. Yet it follows
from the Maximum Modulus Principle that every holomorphic map C — C
must be constant, and from Liouville’s Theorem that every holomorphic map
C — D must be constant.

Another closely related statement is the following. Let U be an open
subset of C.

Theorem 1.4 (Weierstrass Uniform Convergence Theo-
rem). If a sequence of holomorphic functions f, : U — C
converges uniformly to the limit function f, then f itself is
holomorphic. Furthermore, the sequence of derivatives f) con-
verges, uniformly on any compact subset of U, to the derivative

f

It follows inductively that the sequence of second derivatives f/ con-
verges, uniformly on compact subsets, to f”, and so on.

Proof of Theorem 1.4. Note first that the sequence of first derivatives
f1, restricted to any compact subset K C U, converges uniformly. For
example, if |f,(2) — fm(2)| < € for m,n > N, and if the r-neighborhood
of any point of K is contained in U, then it follows from Lemma 1.2" that
|fl(z2)=f].(2)| < €/r for m,n > N andforall z € K. This proves uniform
convergence of {f,} restricted to K to some limit function g, which
is necessarily continuous since any uniform limit of continuous functions
is continuous. It follows that the integral of f along any path in U
converges to the integral of g along this path. Thus f = lim f, is an
indefinite integral of g, and hence g can be identified with the derivative
of f. Thus f has a continuous complex first derivative and therefore is a
holomorphic function. 0O

Conformal Automorphism Groups. For any Riemann surface S,
the notation G(.S) will be used for the group consisting of all conformal
automorphisms of S. The identity map will be denoted by I = Ig € G(S).

We first consider the case of the Riemann sphere C and show that
g ((C) can be identified with a well-known complex Lie group. Thus G(C )
is not only a group, but also a complex manifold, and the product and
inverse operations for this group are both holomorphic maps.
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Lemma 1.5 (Mobius Transformations). The group G(C)
of all conformal automorphisms of the Riemann sphere is equal
to the group of all fractional linear transformations (also called
Mobius transformations)

9(z) = (az+b)/(cz+d),

where the coefficients are complex numbers with ad — be # 0.

Here, if we multiply numerator and denominator by a common factor,
then it is always possible to normalize so that the determinant ad — bc is
equal to +1. The resulting coeflicients are well defined up to a simulta-
neous change of sign. Thus it follows that the group G(C) of conformal
automorphisms can be identified with the complex 3 -dimensional Lie group
PSL(2,C), consisting of all 2 x 2 complex matrices with determinant +1
modulo the subgroup {%I}. Since the complex dimension is 3, it follows
that the real dimension of PSL(2,C) is 6.

Proof of Lemma 1.5. It is easy to check that G(C) contains this
group of fractional linear transformations as a subgroup. After composing
the given g € G(C) with a suitable element of this subgroup, we may
assume that ¢(0) = 0 and g(oo) = co. But then the quotient g(z)/z is
a bounded holomorphic function from C \ {0} to itself. (In fact, g(z)/z
tends to the nonzero finite value ¢’(0) as z — 0. Setting ¢ = 1/z and
G(¢) = 1/g9(1/(¢), evidently g(z)/z = (/G({) tends to the nonzero finite
value 1/G'(0) as z — oc0.) Setting z = e", it follows that the composition
w — g(e")/e” is a bounded holomorphic function on C. Hence it takes
a constant value ¢ by Liouville’s Theorem. Therefore g(z) = cz is linear,
and hence g itself is an element of PSL(2,C). O

Next we will show that both G(C) and G(D) can be considered as Lie
subgroups of G(C).

Corollary 1.6 (The Affine Group). The group G(C) of all
conformal automorphisms of the complex plane consists of all
affine transformations

f(z) = Az+c¢c
with complex coefficients A #0 and c.

Proof. First note that every conformal automorphism f of C extends
uniquely to a conformal automorphism of C. In fact lim,_so f (2) = 00, S0
the singularity of 1/f(1/() at { =0 is removable. (Compare Ahlfors [1966,
p. 124].) It follows that G(C) can be identified with the subgroup of G(C)
consisting of Mébius transformations which fix the point co. Evidently this
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is just the complex 2-dimensional subgroup consisting of all complex affine
transformations of C. O

Theorem 1.7 (Automorphisms of D). The group G(D) of
all conformal automorphisms of the unit disk can be identified
with the subgroup of G(C) consisting of all maps

f(z) =
0

where a ranges over the open disk D and where € ranges
over the unit circle 0.

oy Zo— @4
819

(1:1)

1—az

This is no longer a complez Lie group. However, G(D) is a real 3-dimen-
sional Lie group, having the topology of a “solid torus” D x dD.

Proof of Theorem 1.7. Evidently the map f defined by (1:1)

carries the entire Riemann sphere C conformally onto itself. A brief com-
putation shows that

If(2)] <1 <= (z—-a)(z—a)<(l-az)(l—az)
— (1-2Z)(1—aa) > 0.
For any a € D, it follows that |f(z)] <1 <= |z| < 1. Hence f maps

D onto itself. Now if ¢g: D =D isan arbitrary conformal automorphism
and a € D is the unique solution to the equation g(a) = 0, then we
can consider f(z) = (z —a)/(1 — @z), which also maps a to zero. The
composition go f~1 is an automorphism fixing the origin, hence it has the
form go f71(z) = €2 by the Schwarz Lemma, and g(z) = € f(z), as
required. 0O

It is often more convenient to work with the upper half-plane H, con-
sisting of all complex numbers w = u + v with v > 0.

Lemma 1.8 (D = H). The half-plane H is conformally iso-
morphic to the disk 1D under the holomorphic mapping
w — (i—w)/(@+ w),
with inverse
z — i(l—=2)/(1+ 2),
where z €D and w € H.
Proof. If 2 and w = u + iv are complex numbers related by these
formulas, then |2 < 1 if and only if |i — w|? = u? + (1 — 2v +v?) is

less than |i + w|? = u? + (1 + 2v + v?), or in other words if and only if
v>0. 0O
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Corollary 1.9 (Automorphisms of H). The group G(H)
consisting of all conformal automorphisms of the upper half-
plane can be identified with the group of all fractional linear
transformations w — (aw + b)/(cw + d), where the coefficients
a,b,c,d are real with determinant ad — be > 0.

If we normalize so that ad — bc = 1, then these coefficients are well
defined up to a simultaneous change of sign. Thus G(H) is isomorphic to
the group PSL(2,R), consisting of all 2x2 real matrices with determinant
+1 modulo the subgroup {+I}.

Proof of Corollary 1.9. If f(w) = (aw + b)/(cw + d) with real
coefficients and nonzero determinant, then it is easy to check that f maps
R U co homeomorphically onto itself. Note that the image

f(@) = (ai+0b)(—ci+d)/(c? + d?)

lies in the upper half-plane H if and only if ad — be > 0. It follows easily
that this group PSL(2,R) of positive real fractional linear transformations
acts as a group of conformal automorphisms of H. This group acts tran-
sitively. In fact the subgroup consisting of all w — aw + b with a > 0
already acts transitively, since such a map carries the point ¢ to a com-
pletely arbitrary point ai+ b € H. Furthermore, PSL(2,R) contains the
group of “rotations”

g(w) = (wcosf + sinf)/(—wsin @ + cos ), (1:2)
which fix the point ¢(i) = i with derivative ¢’(i) = ¢*?. By Lemmas
1.2 and 1.8, there can be no further automorphisms fixing ¢, and it follows
easily that G(H) = PSL(2,R). O

To conclude this section, we will try to say something more about the
structure of these three groups. For any map f : X — X, it will be
convenient to use the notation Fix(f) C X for the set of all fixed points
r= f(z). If f and g are commuting maps from X to itself, fog = gof,
note that

f(Fix(g)) C Fix(g). | (1:3)

For if z € Fix(g), then f(z) = fog(z) =go f(z), hence f(z) € Fix(g).
We first apply these ideas to the group G(C) of all affine transformations
of C.

Lemma 1.10 (Commuting Elements of G(C)). Two non-
identity affine transformations of C commute if and only if they
have the same fized point set.
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It follows easily that any g # I in the group G(C) is contained in a
unique maximal abelian subgroup consisting of all f with Fix(f) = Fix(g),
together with the identity element.

Proof of Lemma 1.10. Clearly an affine transformation with two fixed
points must be the identity map. If ¢ has just one fixed point 2g, then
it follows from (1:3) that any f which commutes with g fixes this same
point. The set of all such f forms a commutative group, consisting of all
f(2) = 20+ A(z — 20) with A # 0. Similarly, if Fix(g) is the empty set,
then g is a translation z+— 2+ c¢,and fog=go f if and only if f is
also a translation. 0O

Now consider the group G(C) of automorphisms of the Riemann sphere.

By definition, an automorphism ¢ is called an involution if gog=1I, but
g# 1.

Theorem 1.11 (Commuting Elements of G( (C)). For every

f#1I in G(C), the set Fix(f) c C contains either one point

or two points. In general, two nonidentity elements f,g € G(C)

commute if and only if Fix(f) = Fix(g). The only exceptions to

this statement are provided by pairs of commuting involutions,

each of which interchanges the two fized points of the other.

(Compare Problem 1-c. As an example, the involution f(z) = —z
with Fix(f) = {0,00} commutes with the involution g(z) = 1/z with

Fix(g) = {£1}.)

Proof of Theorem 1.11. The fixed points of a fractional linear trans-
formation can be determined by solving a quadratic equation, so it is easy
to check that there must be at least one and at most two distinct solutions
in the extended plane C. (If an automorphism of C fixes three distinct
points, then it must be the identity map.)

If f commutes with g, which has exactly two fixed points, then since
f(Fix(g)) = Fix(g) by (1:3), it follows that f either must have the same
two fixed points or must interchange the two fixed points of g. In the first
case, taking the fixed points to be 0 and oo, it follows that both f and
g belong to the commutative group consisting of all linear maps z — Az
with A € C~ {0}. In the second case, if f interchanges 0 and oo, then it
is necessarily a transformation of the form f(z) =n/z, with fo f(z) = z.
Setting g(z) = Az, the equation go f = fog reduces to A2 =1, so that
g must also be an involution.

Finally, suppose that g has just one fixed point, which we may take
to be the point at infinity. Then by (1:3) any f which commutes with ¢
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must also fix the point at infinity. Hence we are reduced to the situation of
Lemma 1.10, and both f and ¢ must be translations z — z + ¢. (Such
automorphisms with just one fixed point, at which the first derivative is
necessarily +1, are called parabolic automorphisms.) This completes the
proof. O

We want a corresponding statement for the open disk D. However, it
is better to work with the closed disk D, in order to obtain a richer set of
fixed points. Using Theorem 1.7, we see easily that every automorphism of
the open disk extends uniquely to an automorphism of the closed disk.

Theorem 1.12 (Commuting Elements of G(D)). For ev-
ery f# I in G(D) = G(D), the set Fix(f) C D consists of
either a single point of the open disk D, a single point of the
boundary circle 0D, or two points of 0D. Two nonidentity au-
tomorphisms f,g € G(D) commute if and only if they have the

same fized point set in D.

Remark 1.13. (Compare Problem 1-d.) An automorphism of D
is often described as “elliptic,” “parabolic,” or “hyperbolic” according to
whether it has one interior fixed point, one boundary fixed point, or two
boundary fixed points. We can describe these transformations geometri-
cally as follows. In the elliptic case, after conjugating by a transformation
which carries the fixed point to the origin, we may assume that 0 = g(0).
It then follows from the Schwarz Lemma that g is just a rotation about
the origin. In the parabolic case, it is convenient to replace D by the upper
half-plane, choosing the isomorphism D = H so that the boundary fixed
point corresponds to the point at infinity. Using Corollary 1.9, we see that g
must correspond to a linear transformation w — aw+b with a, b real and
a > 0. Since there are no fixed points in R C JdH, it follows that a =1,
so that we have a horizontal translation. Similarly, in the hyperbolic case,
taking the fixed points to be 0, co € JH, we see that g must correspond
to a linear map of the form w +— aw with a > 0. (It is rather inelegant
that we must extend to the boundary in order to distinguish between the
parabolic and hyperbolic cases. For a more intrinsic interpretation of this
dichotomy see Problem 1-f, or Problem 2-e in §2.)

Proof of Theorem 1.12. In fact every automorphism of D or D isa
Mobius transformation and hence extends uniquely to an automorphism F'
of the entire Riemann sphere. This extension commutes with the inversion
map «(z) =1/z. In fact the composition @ o F o« is a holomorphic map
which coincides with F on the unit circle and hence coincides with F
everywhere. Thus F has a fixed point z in the open disk D if and only



