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Preface

Polysaccharides are the basic skeletal component of plant tissues. Inasmuch as
polysaccharides do not depolymerize substantially during extraction and
purification, isolated polysaccharides, through their ~macromolecular
assemblies, are exploited in the creation of structure and texture, in vitro, in
aqueous media, with particular applications in fabricated foods. They
frequently perform interchangeably, although subtle differences may elicit
different, sometimes unique, behavior among members and isomers, under
identical combinations of stimuli. The spontaneous tendency of dispersed
polysaccharide solutes to aggregate cohesively and adhesively with other
molecules impels them toward the creation of supramolecules. This treatise
focuses on the physicochemical origins and structures formed by the
association of aqueous, dispersed polysaccharides with like and unlike
chemical species.

Reginald H. Walter
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Origin of Polysaccharide
Supramolecular Assemblies

Reginald H. Walter*

Cornell University—Geneva
Geneva, New York

. INTRODUCTION

Nature is adept at weaving (practically) one-, two-, and three-dimensional
structures (Fig. 1) from aqueous, dispersed polysaccharides, through whose
instrumentality it imparts form and function to living plant tissues, to wit,
the cellulose skeleton of fruits and vegetables. This biopolymer is deposited
naturally in bundles of microfibrils that constitute the fibrous and ribbonlike
suprastructures of vegetable matter. Native starch is deposited mostly as
spheroidal granules. Arguably, macromolecular assemblies with aquatic and
microbial polysaccharides, in vivo, have teleological significance. Polysac-
charide supramolecules may also be the product of purely chemical synthe-
sis. The natural and chemically synthesized polysaccharides and their deriv-
atives are collectively called gums. This unconventional class of substances
is increasingly relied on to impart coherence, body, and texture to fluid
substrate, in vitro. The singular property common to its members is their
amphiphilicity, albeit to different degrees, which enables them to associate
with polar and nonpolar molecules alike in water (surfactancy). The extent
of the surfactant associations is determined by the net force generated as a
result of solute—solute, surfactant—solute, and surfactant—solvent interac-

*Retired.



2 Walter

Figure 1 Natural plant structures: (left to right) partial fascicle of white pine (Pi-
nus stobus), a portion of the leaf base of the coconut palm (Cocus nucifera), and
the loofah of a gourd (Luffa aegyptiaca).

tions and by thermal energy [1]. lonic polysaccharides experience additional
coulombic attraction and repulsion.

Aqueous polysaccharides display a continuum of disorder—order—dis-
order and order—disorder—order transitions that ultimately yield flocs, pastes,
aggregates, gels, and precipitates. The final outcome is dictated more by the
solute’s aqueous environment and external stimuli than by its chemistry. It
is not unusual for different gums to exhibit the same response under a given
set of conditions and for the same gum to respond differently to different
combinations of stimuli.

Il. DEFINITIONS

Some definitions are a necessary precedent to elaborating the tendency of
gums to associate in aqueous media. A polymer, synonymously called mac-
romolecule, is a molecule, 10—10° nm diameter, containing 10°-10" chain
atoms [2]. Thus, size is conventionally characterized by the degree of poly-
merization (DP) as well as by the molecular weight. The DP, then, is the
length of a polymer’s unsubstituted primary chain, counted in monomer
units. Oligosaccharides are differentiated from polysaccharides by a cutoff
molecular weight of 10—20 monomers [3,4].

Chemically, polysaccharides are mostly linear polyhydric alcohols,
polyacids, or polyesters, consisting of a primary structure that is subject to
various configurations (the secondary structure), depending on bond lengths
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and angles, the DP, branching, heterogeneity, and sensitivity to the dispersion
medium. The topology of a linear polymer is the average of multiple equi-
librium geometries of the primary structure. Long, single-bonded chains are
conducive to flexibility, and short chains, to rigidity. Unsubstituted primary
chains facilitate parallel orientations and contacts between segments of dif-
ferent chains.

An amphiphile, containing hydrophobic and hydrophilic groups in the
same molecule, enables amphiphilicity to be empirically referenced against
a quantifiable tendency to promote oil-in-water and water-in-oil emulsions;
this is the hydrophile—lipophile balance [5]. Amphiphilic chain segments
result in ordered micellar aggregation in solution or bulk [6]. Dispersed
polysaccharide solutes are prone to micellar aggregation, as a consequence
of the high incidence of polar groups [hydroxyl (—OH), carboxyl (—COOH),
and/or sulfonic (~OSO;H) groups]: —COOH is common in uronans, and
—OSO;H in carrageenans. A micelle is defined as a spontaneously formed
aggregate of tens to hundreds of surfactant molecules or ions [7]. Trifunc-
tionality in a polysaccharide monomer accommodates aggregation by three-
dimensional crosslinking.

The association tendency of some polysaccharides is altered by chem-
ical derivatization, notably esterification and etherification, and that of others
by deesterification. Starch and cellulose, for example, are alkylated and hy-
droxyalkylated to improve performance over the parent molecules’. Pectin
is a deesterified biopolymer of protopectin, the native precursor. Neither the
original nor the derivatized species is truly water-soluble in the classical
sense of a monophase; instead, they disperse to a macromolecularly heter-
ogeneous system [8].

A polymer molecule in a flow field devoid of adsorbed solvent, trav-
eling at a different rate from the bulk solvent, is said to be free-draining. A
non-free-draining polysaccharide molecule has an adsorbed envelope of wa-
ter traveling at the same rate as the solid core. Non-free-draining water
(water of hydration) is therefore an integral part of the discrete colloidal
nucleus. Hydrodynamic interaction refers to the influence of the motion of
a molecule or segment and its water of hydration on other molecules or
segments. Free-draining water is the overwhelming volume of solvent in a
solution or dispersion. Inasmuch as free-draining water is not in colloidal
association with the discrete nucleus, and therefore almost always travels
with a different velocity from it, any identicalness of transport of the discrete
nucleus and free-draining water is purely coincidental. Free-draining water
is not affected by hydrodynamic interaction.

Water of hydration has a stabilizing effect on dispersed gums, through
a number of different mechanisms [8].
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Dispersed polysaccharides structure water at the solid—liquid interface
where the water becomes non-free-draining. The influence of a polysaccha-
ride is exercised at concentrations as low as fractions of a percent, where at
the binary dispersion can assume the character of either a liquid or a solid,
under the influence of solvent conditions and temperature. A dilute disper-
sion is considered to be one in which there is no solute—solute interaction;
in such a “dilute’’ regime, dispersion properties are additive of the contri-
bution of single molecules. At the highest weight or volume percentages—
the concentrated regime—each property loses its concentration dependence,
and, behaving like a polymer melt, the dispersion displays thixotropy, vis-
coelasticity, or elasticity. At intermediate concentrations, linear dispersed sol-
ute entangles and interpenetrates and hence exhibits unique properties. The
critical micelle concentration (c*) is that concentration at which gross mac-
romolecular properties of a dispersion cease to be concentration-dependent,
and the properties obtain from clusters of molecules acting as single hydro-
colloidal units.

Molecules and segments of a dispersed polysaccharide occupy an ex-
cluded volume (w.,) that is inaccessible to other segments and molecules.
The v, effect is the net of divers forces acting on the segment or molecule
in v, The free volume (v) is that vacant volume available for occupancy
by any segment or molecule. The volume of a dispersion (V) is the sum of
the excluded volume and the free volume:

Vi=vy + vy €Y

A large v, is indicative of much space for independent molecular motion;
conversely, a small v, suggests a higher probability of polymer—polymer
contacts. At the macromolecular level, Eq. (1) is temperature-dependent. The
glass transition temperature (7,) is the temperature where v, is zero or con-
stant and translational and rotational motions cease, relative to the expanded
chain’s motion above 7, where Brownian activity engenders increasing v,
with increasing temperature. Below T7,, v., expands only as a result of the
higher amplitudes of the thermal vibrations [9].

Ordered polysaccharide assemblies (e.g., rods and helices) show a
lower c¢* than do the disordered assemblies (random coils). Cellulose and
cellulose derivatives are inherently stiff rods, because of the B-glycoside
bonding and the steric hindrance resulting from the substituents, thereby
initiating resistance to segmental rotations. Starch and noncellulose gums
freely adopt flexible shapes, because of widespread amorphism.

Random coils, rigid rods, stiff chains, etc., define a tertiary structure
(conformation). In the vicinity of ¢* at a critical temperature, modulated by
solution conditions, tertiary structures grow into quaternary structures, in-
sofar as points of contact or junction zones multiply into micelles, aggre-
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gates, clusters, vesicles, gels, films, and crystals. Clusters of ordered surfac-
tants in oil/water emulsions are typically 100 molecules [10]. Vesicles are
self-ordering closed bilayers wherein amphiphiles are sandwiched between
two liquid layers thousands of angstroms apart [11]. Gels are given many
definitions, but the common feature is elasticity in the semisolid structure.
Gels are the most common form of food polysaccharides. A hydrogel is a
dispersion structured as a discontinuous, solid phase in a continuous water
phase; a xerogel is a dehydrated hydrogel. Films are two-dimensional xer-
ogels. The mechanics of the macromolecular associations initiating these
structures include interpenetration of random coils, multiple coupling of sin-
gle and double helices, orientation of rods, and electrostatic crosslinking in
homogeneous and mixed junction zones.

The quaternary ordering of rods and stiff chains along the molecular
axis eventuates into mesomorphic phases that are intermediate between a
liquid and a crystalline solid. These mesomorphs, or liquid crystals, remark-
able for their appearance as a solid at rest and as a liquid when disturbed,
possess unique features, e.g., dichroism and birefringence. Their ¢* generally
depends on chain rigidity [12] that in turn is a complicated function of side-
and main-chain lengths, side-chain chemistry, and temperature [13]. Meso-
phases are classified as lyotropic, if the self-organization results from inter-
action with an amphiphilic surfactant cosolute, which enables them to be
disordered by solvent action; they are classified as thermotropic, if the self-
organization develops in an usually narrow temperature interval.

A linear, random-coil polymer has been theoretically modeled after a
sphere. It should be recalled that a sphere has the lowest area/volume ratio
of all known geometries. The normally hydrated polysaccharides are pref-
erably represented by an equivalent hydrodynamic sphere that is assumed
to have properties and exhibit responses identical to those of its linear coun-
terpart. Spherical [14] and circular [15] polysaccharide suprastructures have
been observed experimentally. The volume of this equivalent hydrodynamic
sphere is delimited by the hydrodynamic radius, R,, the radius of gyration,
R,, or the root mean square end-to-end distance, (r*)'? i.e., the average
distance between the two ends of a chain. The relationship between R, R,,
and (r°)'” is as follows [9,16]:

R, = 0.665R, 2)
()" = (6R)"” 3
The squared function averages the distances of all solute molecules in a
positive and negative direction from the center of mass. Water of hydration

creates long distances between non-free-draining coils, giving a longer R,
and R,. Rodlike polysaccharides are dimensionally thicker, i.e., give a shorter



