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Preface

Game theory once again proves to be a dynamic field. In less than 100 years since the
name was coined, it has reached the status of a major branch of both mathematics
and economics. It has also proved quite useful in several of the social sciences. Even
biology and finance have been touched (and, I hope, improved) by game-theoretic
analysis. The field continues to expand, and so a book that I last published in 1995
requires some modification. I am happy that Emerald Publishers is giving me a
chance to bring out a new edition.

It would be very difficult to include all the new developments in the field. I have
therefore merely added a chapter explaining some of the most important advances in
game theory. In particular, I have tried to describe the developments that have been
central to several of the Nobel Memorial Prizes in Economics.

I also wish to thank people who have helped me, by vigorous and stimulating
discussion, to improve this book. These include Francesc Carreras, Héléne Ferrer,
Gianfranco Gambarelli, Maurice Koster, Ines Lindner, Conrado Manuel, Gordon
McCormick, Martha Saboya, and Juan Tejada.

Finally, I am sad to mention the deaths of some members of the game theory
community. Michael Maschler, my mentor and one of my best friends, was
instrumental in the development of the bargaining set and related concepts. John
Harsanyi, also a good friend, was one of the first to study games with incomplete
information. I will always miss them both.

Guillermo Owen
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Chapter 1

Definition of a Game

1.1. General Notions

The general idea of a game is that with which we are familiar in the context of parlor
games. Starting from a given point, there is a sequence of personal moves, at each of
which one of the players chooses from among several possibilities; interspersed
among these there may also be chance, or random, moves such as throwing a die or
shuffling a deck of cards.

Examples of this type of game are chess, in which there are no chance moves
(except for the determination of who shall play first), bridge, in which chance plays a
much greater part, but in which skill is still important, and roulette, which is entirely
a game of chance in which skill plays no part.

The examples of bridge and chess help to point out another important element of
a game. In fact, in a chess game each player knows every move that has been made so
far, while in bridge a player’s knowledge is usually very imperfect. Thus, in some
games, a player is unable to determine which of several possible moves has actually
been made, either by an opposing player, or by chance. The practical result of this
is that, when a player makes a move, he does not know the exact position of the
game, and must make his move remembering that there are several possible actual
positions,

Finally, at the end of a game, there is normally some payoff to the players (in the
form of money, prestige, or satisfaction) which depends on the progress of the game.
We may think of this as a function which assigns a payoff to each ‘‘terminal
position” of the game.

1.2. Games in Extensive Form

In our general idea of a game, therefore, three elements enter: (1) alternation of
moves, which can be either personal or random (chance) moves, (2) a possible lack of
knowledge, and (3) a payoff function.

We define, first, a ropological tree or game tree as a finite collection of nodes,
called vertices, connected by lines, called arcs, so as to form a connected figure
which includes no simple closed curves. Thus it follows that, given any two vertices
A and B, there is a unique sequence of arcs and nodes joining 4 to B.
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From this we obtain

1.2.1 Definition. Let I" be a topological tree with a distinguished vertex 4. We say
that a vertex C follows the vertex B if the sequence of arcs joining 4 to C passes
through B. We say C follows B immediately if C follows B and, moreover, there is an
arc joining B to C. A vertex X is said to be terminal if no vertex follows X.

1.2.2 Definition. By an n-person game in extensive form is meant

() a topological tree T" with a distinguished vertex A4 called the starting point of T,

() a function, called the payoff function, which assigns an n-vector to each terminal
vertex of T';

(y) a partition of the nonterminal vertices of I" into n + 1 sets Sy, Si,..., Sy, called
the player sets;

(0) a probability distribution, defined at each vertex of Sy, among the immediate
followers of this vertex; .

(¢) for each i=1,...,n, a subpartition of S; into subsets S/, called information
sets, such that two vertices in the same information set have the same number of
immediate followers and no vertex can follow another vertex in the same
information set; _ .

(¢) for each information set S}, an index set 7, together with a 1 — 1 mapping of the
set 7% onto the set of immediate followers of each vertex of S).

The elements of a game are seen here: condition « states that there is a starting
point; f gives a payoff function; y divides the moves into chance moves (Sp) and
personal moves which correspond to the n players (S;,...,S,); ¢ defines a
randomization scheme at each chance move; ¢ divides a player’s moves into
“information sets’’: he knows in which information set he is, but not which vertex of
the information set.

1.2.3 Example. In the game of matching pennies (Figure 1.1), player I chooses
“heads” (H) or “tails” (T). Player II, not knowing player I's choice, also chooses
“heads™ or “tails.” If the two choose alike, then player II wins a cent from player I;
otherwise, player I wins a cent from II. In the game tree shown, the vectors at the

(-1.1) =1 -1 (-1,1)

ATl

Figure 1.1.
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terminal vertices represent the payoff function; the numbers near the other vertices
denote the player to whom the move corresponds. The shaded area encloses moves in
the same information set.

1.2.4 Example. The game of pure strategy, or GOPS, is played by giving each of
two players an entire suit of cards (13 cards), A third suit is shuffled, and the cards of
this third suit are then turned up, one by one. Each time one has been turned up, each
player turns up one of his cards at will: the one who turns up the larger card “wins”
the third card. (If both turn up a card of the same denomination, neither wins.) This
continues until the three suits are exhausted. At this point, each player totals the
number of spots on the cards he has “won’’; the “score” is the difference between
what the two players have.

With 13-card suits, this game’s tree is too large to give here; however, we can give
part of the tree of an analogous game using three-card suits (Figure 1.2).

There is a single chance move, the shuffle, which orders the cards in one of the six
possible ways, each having a probability of %. After this the moves correspond to
the two players, I and II, until the game ends. We have drawn parts of the game
tree, including the initial point, several branches, and four of the terminal points. The
remaining branches are similar to those we have already drawn. With respect to
information, we have

(-2,2) (1,-1)(=1,1)(-2,2)

312 A(0)

Figure 1.2.



4 1.3. Strategies: The Normal Form

1.2.5 Definition. Player i is said to have perfect information in T if his information
sets S{ each consist of one element. The game I is said to have perfect information if
each player has perfect information in I

For example, chess and checkers have perfect information, whereas bridge and
poker do not.

1.3. Strategies: The Normal Form

The intuitive meaning of a strategy is that of a plan for playing a game. We may
think of a player as saying to himself, “If such and such happens, I'll act in such and
such a manner.” Thus, we have

1.3.1 Definition. By a strategy for player i is meant a function which assigns, to each
of player ’s information sets 5, one of the arcs which follows a representative vertex
of §/.

The set of all strategies for player i will be called Z;.

In general, we are accustomed to the idea that a player decides his move in a game
only a few moves, at best, in advance, and quite usually only at the moment he must
make it. In practice this must be so, for in a game such as chess or poker the number
of possible moves is so great that no one can plan for every contingency very much
in advance. From a purely theoretic point of view, however, we can overlook this
practical limitation, and assume that, even before the game starts, each player has
already decided what he will do in each case. Thus, we are actually assuming that
each player chooses a strategy before the game starts.

Since this is so, it only remains to carry out the chance moves. Moreover, the
chance moves may all be combined into a single move, whose result, together with
the strategies chosen, determines the outcome of the game.

Actually, what we are interested in, and what the players are interested in, is
deciding which one of the strategies is best, from the point of view of maximizing the
player’s share of the payoff (i.e., player i will want to maximize the ith component of
the payoff function). As, however, no one knows, except probabilistically, what the
results of the chance moves will be, it becomes natural to take the mathematical
expectation of the payoff function, given that the players are using a given n-tuple of
strategies. Therefore, we shall use the notation

(015025 - 5 On) = (T1(C1y .+ 55 Tn)s TIo e Dio s+ 3 Bl G 1seiv « 5:G7))

to represent the mathematical expectation of the payoff function, given that player i
is using strategy o; € X;.

From this, it becomes possible to tabulate the function n(s,...,q,) for all
possible values of ay,...,0,, either in the form of a relation, or by setting up an
n-dimensional array of n-vectors. (In case n = 2, this reduces to a matrix whose
elements are pairs of real numbers.) This n-dimensional array is called the normal
form of the game T".
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1.3.2 Example. In the game of matching pennies (see Example 1.2.3) each player has
the two strategies, “heads™ and “tails.” The normal form of this game is the matrix

H T
Ml ilb=1;8) -1
T 1Q,-1) (—-1,1)

(where each row represents a strategy of player I, and each column a strategy of
player II).

1.3.3 Example. Consider the following game: An integer z is chosen at random, with
possible values 1, 2, 3, 4 (each with probability }). Player I, without knowing the
results of this move, chooses an integer x. Player II, knowing neither the result of the
chance move nor I's choice, chooses an integer y. The payoff is

(ly—zl—Ix—zl|x—zl =y —z])

i.e., the point is to guess close to z.

In this game each player has four strategies: 1, 2, 3, 4, since other integers are of
little use. If, for instance, I chooses 1 and II chooses 3, then the payoff will be (2, —2)
with probability i, (0,0) with probability %. and (—2,2) with probability % The

expected payoff, then, is n(1,3) = (—3,4). Calculating all the values of (g}, 52), we
obtain
1 2 3 4
1| 00 (=53 (-3.3 (0,0)
3 %v i % (0, 0) (O, 0) %’ - %
4| (0,0 (-4 (-3 (0,0)

1.3.4 Definition. A game is said to be finite if its tree contains only finitely many
vertices.

Under this definition, most of our parlor games are finite. Chess, for instance, is
finite, thanks to the laws which end the game after certain sequences of moves.

It should be seen that, in a finite game, each player has only a finite number of
strategies.

1.4. Equilibrium n-Tuples

1.4.1 Definition. Given a game T, a strategy n-tuple (g},05,...,0,) is said to be in
equilibrium, or an equilibrium n-tuple, if and only if, forany i = 1,...,n, and 6; € Z,.
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» * ™ * * * *
M0y 301300y Oy g2 0,) S (0, ..., 0,)

In other words, an n-tuple of strategies is said to be in equilibrium if no player has
any positive reason for changing his strategy, assuming that none of the other players
is going to change strategies. If, in such a case, each player knows what the others
will play, then he has reason to play the strategy which will give such an equilibrium
n-tuple, and the game becomes very stable.

1.4.2 Example. In the game with normal form
B B,
o[ @D 0,0
@ | (0,0 1,2)

both (;, ) and (a2, ;) are equilibrium pairs.

Unfortunately, not every game has equilibrium n-tuples. As an example, the game
of matching pennies (Example 1.3.2) has no equilibrium pairs.

In general, if a game has no equilibrium n-tuples, we usually see the several players
trying to outguess each other, keeping their strategies secret. This suggests (and it is
indeed true) that in games of perfect information, equilibrium n-tuples exist.

To prove this statement, we must study the question of decomposition of a game.

A game I' will be said to decompose at a vertex X if there are no information
sets which include vertices from both of (a) X, and all its followers, and (b) the
remainder of the game tree. In this case, we can distinguish the subgame, I'y,
consisting of X, and all its followers, and the quotient game, I'/ X, which consists of
all the remaining vertices, plus X. For the quotient game, X will be a terminal vertex;
the payoff here can be considered to be I'y: i.e., the payoff at this vertex is a play of
the subgame I'y.

Now, as we have seen, a strategy for 7 is a function whose domain consists of the
information sets of player i. If we decompose a game at X, then we can also
decompose the strategy ¢ into two parts: ojr/y, obtained by restricting ¢ to
information sets in I'/X, and or,, obtained by restricting ¢ to I'y. Conversely, a
strategy for I'/ X and a strategy for I'y can be combined in the obvious way to yield
a strategy for the larger game I'.

1.4.3 Theorem. Let I decompose at X. For ¢; € Z;, assign to X (considered as a
terminal vertex of I'/X) the payoff
nX(al|rx5 0'2[[',1', tevy an|l"x)

In this case

(01, ..,00) = nr x(Oyr/X5 - - - » Omr/x)

The proof of this theorem is clear and can be left as an exercise to the reader.
Briefly, it is only necessary to verify that, for each possible outcome of the chance
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moves, the same terminal vertex is eventually reached either in the original or in the
decomposed game.
With this, we can prove.

1.44 Theorem. Let I' decompose at X, and let o;€Z;, be such that
(@) (o1rys..-»0nry) is an equilibrium #n-tuple for I'y, and (b) (6yr/xs- -+ Tpr/x)
is an equilibrium n-tuple for I'/X, with the payoff n(oyry,...,0ur,) assigned to
the terminal vector X. Then (o,...,0,) is an equilibrium #-tuple for I'.

Proof. Let 6; € ;. Because (oyry,...,0nr,) is an equilibrium n-tuple for I'y, it
follows that

1'[,'(0'||rt\,, 2 5 ,5‘”“., e ’Gﬂlr,\') < 7t,-(0'||rx, Laely, G'n|rx)

On the other hand, by (b) we know that, if we assign the payoff n(or,,...,0nr,)
to the vector X, then

TOUL X5+ » OiT /X5 + -+ OniT/x) = BlOUT X5+ + + 2 OuiT/X)

Now, the payoff (for a given set of strategies) is a weighted average of the payoffs
at some of the terminal vertices of a tree. Hence, if the payoff to player i at a given
terminal vertex (X, in this case) is decreased, his expected payoff, for any choice
of strategies, will either remain equal or be decreased. Thus, applying Theorem 1.4.3,
we find that

ni(GIQ"'9&i7"'9aﬂ) 5 ni(ali""an)

and so (oy,...,0,) is an equilibrium z-tuple.
This is all we need to prove.

1.4.5 Theorem. Every finite n-person game with perfect information has an
equilibrium n-tuple of strategies.

Proof. We shall define the length of a game as the largest possible number of edges
that can be passed before reaching a terminal vertex, i.e., the largest possible number
of moves before the game ends. Clearly a finite game has finite length. The proof is by
induction on the length of the game.

If T has length 0, the theorem is trivially true. If it has length 1, then at most one
player gets to move, and he obtains equilibrium by choosing his best alternative. If I
has length m, then it decomposes (having perfect information) into several subgames
of length less than m. By the induction hypothesis, each of these subgames has an
equilibrium n-tuple; by Theorem 1.4.4 these form an equilibrium »-tuple for I'.

1.5. The Monty Hall Game

We conclude this chapter with an example which, in the past, raised some
controversy. Based on a well-known television show (Let’s Make a Deal), the
problem caused serious discussion among mathematicians and others who treated
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it as a problem in probability theory. (See items 3, 6, 8 in the bibliography for
background on the problem and the controversy.) We will, rather, treat it as a game.

In this game, a Contestant (player I) is shown three screens. Behind one of these
screens is an expensive, brand-new automobile. There is a goat behind each of the
other two screens. It is understood that each screen has probability % of being
the “good’ screen (i.e., the one with the automobile).

Once chance has chosen the good screen, player I, in ignorance of the results of the
chance move, chooses one of the screens (call this screen ). At this point Monty Hall,
the host of the show (player II), opens another one of the screens (call this screen b), to
reveal a goat. In doing this, Monty knows the outcome of the chance move.

Player I may then insist on screen a, or opt to switch to screen c. In either case, he
will receive whatever is behind his final choice (a or ¢). It is assumed that the
automobile is much more valuable than the goat. What is the player’s best strategy?

If we treat this as a game, the first thing we notice is that the game is not well
defined. In fact, we are told how the Contestant may act, but we are told neither
how Monty may act, nor what Monty’s payoff will be. There would seem three
possibilities.

Case 1. Monty the Dummy

Monty has no latitude in his actions. If the Contestant’s choice, screen a, is the
good screen, then Monty must open either b or ¢, each with probability 1. If screen a
is one of the two bad screens, then Monty must open the other bad screen (whether it
be b or ¢).

Now, Contestant has two strategies: Insist (on his original choice) and Switch
(from his original choice, @, to the remaining unopened screen, ¢).

Consider his first strategy, Insist. In this case, Contestant will win if (and only if)
a was indeed the good screen. As mentioned above, this has probability 1.

Consider next the strategy Switch. Then, if a is the good screen, Contestant will
lose. If, on the other hand, a is a bad screen, then Monty will open the other bad
screen. Contestant, by switching to the remaining screen, will win. This has
probability 3.

Thus, in this case, Contestant will do better by Switching.

Case 2. The Friendly Monty

Monty has some freedom. After player 1 has chosen screen a, Monty may (but
need not) open a bad screen—either b or ¢. If Monty does not open a screen,
then Contestant will be left with his original choice, a. Moreover, Monty wants
Contestant to win.

In this case, Contestant, with Monty’s help, is sure to win. In fact, if the original
choice, a, is good, then Monty will not open any screen, and Contestant will have to
open his choice, a. If, on the other hand, a is a bad screen, then Monty will open the
other bad screen. Contestant, by switching, will win.

Thus, the strategy Switch will win with probability 1.
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Case 3. The Unfriendly Monty

Monty has some freedom. After player I has chosen screen @, Monty may (but need
not) open a bad screen—either » or ¢. If Monty does not open a screen, then
Contestant will be left with his original choice, a. This time, however, Monty wants
Contestant to /ose.

In this case, Contestant, by Insisting, will win with probability %

Suppose, however, Contestant uses his other strategy, Switch. If a is the good
screen, then Monty’s best strategy is to open one of the other screens—either b or ¢
(both of which are bad). Contestant, by switching to the other bad screen, will lose. If
a is a bad screen, then Monty’s best strategy is not to open any screen, and thus
Contestant will be left with his original choice. Thus Contestant will certainly lose.

In this case, then, Contestant will win with probability % by Insisting, and
probability 0 by Switching.

So what, then, is the best strategy for Contestant? Clearly it depends on the rules
of the game, and also on Monty’s objective: Contestant should Switch if Monty is a
dummy, and also if Monty wants him to win; he should Insist if Monty wants him to
lose. Unfortunately, Contestant is apparently not told the rules of the game, and
probably does not know what Monty wants. Perhaps Monty’s sponsors want
Contestant to win—-it will be good publicity for their products. Perhaps they want
Contestant to lose-they have spent too much money already on prizes.

Clearly Contestant needs more information. This is an example of a game with
incomplete information. We look at possible approaches to these games in Chapter 6
of this book.

Problems

1. An infinite game, even with perfect information, need not have an equilibrium
n-tuple.
(a) Consider a two-person game in which the two players alternate, and, at each
move, each player chooses one of the two digits 0 and 1. If the digit x; is chosen
at the ith move, then each play of the game corresponds to a number

90 Py
X = E ,\‘,‘2—’
=l

in the interval [0, 1]. Then, player I wins one unit from player II if x € S, and
loses one unit if x¢.S, where S is some subset of [0, 1].

(b) Each player has exactly 2% strategies, which can therefore be indexed op,Th
respectively for f<a, where « is the smallest ordinal preceded by at least 2™
ordinals.

(c) Let (o,7) denote the play (or number x) obtained if the players choose
strategies ¢ and t, respectively. For each strategy o of I, player II has 2%
strategies t which will give different values of (o,7) (and similarly for
each strategy 7 of II).



