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Preface

This book is a revision of ‘Handbook of Power System Engineering’ originally published in 2007.
Further to various additional revisions on previous chapters 1-24, new chapters 25-28 for power
electronics applications have been prepared. The preface for the original version is first quoted.

This book deals with the art and science of power systems engineering for those engineers who
work in electricity-related industries such as power utilities, manufacturing enterprises, engineering
companies, or for students of electrical engineering in universities and colleges. Each engineer’s
relationship with power system engineering is extremely varied, depending on the types of
companies they work for and their positions. We expect readers to study the characteristics of
power systems theoretically as a multi-dimensional concept by means of this book, regardless
of readers’ business roles or specialties.

We have endeavoured to deal with the following three points as major features of the book:

First, as listed in the Contents, the book covers the theories of several subsystems, such as
generating plants, transmission lines and substations, total network control, equipment-based local
control, protection, and so on, as well as phenomena ranging from power (fundamental) frequency
to lightning and switching surges, as the integrally unified art and science of power systems. Any
equipment in a power system network plays its role by closely linking with all other equipment, and
any theory, technology or phenomenon of one network is only a viewpoint of the profound dynamic
behaviour of the network. This is the reason why we have covered different categories of theories
combined in a single hierarchy in this book.

Secondly, readers can learn about the essential dynamics of power systems mostly through
mathematical approaches. We explain our approach by starting from physically understandable
equations and then move on to the final solutions that illustrate actual phenomena, and never skip
explanations or adopt half-measures in the derivations.

Another point here is the difference in meaning between ‘pure mathematically solvable’ and
‘engineering analytically solvable’. For example, a person (even if expert in transient analysis) cannot
derive transient voltage and current solutions of a simple circuit with only a few LCR constants
connected in series or parallel because the equational process is too complicated, except in special
cases. Therefore only solutions of special cases are demonstrated in books on transient analysis.
However, engineers often have to find solutions of such circuits by manual calculation. As they usually
know the actual values of LCR constants in such cases, they can derive ‘exact solutions’ by
theoretically justified approximation. Also, an appropriate approximation is an important technique
to find the correct solution. Readers will also find such approximation techniques in this book.

Thirdly, the book deals with scientific theories of power system networks that will essentially
never change. We intentionally excluded descriptions of advanced technologies, expecting such
technologies to continue to advance year by year.

In recent years, analytical computation or simulation of the behaviour of large power system or
complicated circuits has been executed by the application of powerful computers with outstanding
software. However, it is quite easy to mishandle the analysis or the results because of the number of
so many influential parameters. In this book, most of the theoretical explanation is based on typical
simple circuits with one or two generators and one or two transmission lines. Precise understanding
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of the phenomena in such simple systems must always be the basis of understanding actual large
systems and the incidents that may occur on them. This is the reason why power system behaviour
is studied using small models.

The new chapters 25-28 are arranged for power electronic applications but from four different
viewpoints. These are: the theory of induction generators/motors (chapter 25), fundamental
characteristics of various power electronic devices (chapter 26), power electronic circuits and
control theories (chapter 27) and finally various applications of power electronics focusing on
power system engineering and some industrial load applications (chapter 28). The author intended
to describe these four different layered subjects all together in this book, because, the author
believes, most of existing books for power electronics applications usually discusses only two or
three subjects, omitting the other closely related ones. In particular, chapter 25 for induction
machines may be helpful for readers who are already familiar with power electronic applications.

Yoshihide Hase
Kawasaki-city, Japan
15 August, 2012
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Introduction

‘Utilization of fire’, ‘agricultural cultivation” and ‘written communication’: these three items are
sometimes quoted as the greatest accomplishments of humankind. As a fourth item, ‘social
structures based on an electrical infrastructure’, which was created by humans mostly within
the twentieth century, may be added.

Within the last hundred years, we have passed through the era of ‘electricity as a convenient tool’
to the point where electricity has become an inevitable part of our infrastructure as a means of
energy acquisition, transport and utilization as well as in communication media. Today, without
electricity we cannot carry out any of our living activities such as ‘making fire’, ‘getting food and
water’ ‘manufacturing tools’, ‘moving’, ‘communicating with others’, and so on. Humans in most
parts of the world have thus become very dependent on electricity. Of course, such an important
electrical infrastructure means our modern power system network.

A power system network can be likened to the human body. A trial comparison between the two
may be useful for a better understanding of the essential characteristics of the power system.

First, the human body is composed of a great many subsystems (individual organs, bones,
muscles, etc.), and all are composed in turn of an enormous number of minute cells. A power
system network of a large arbitrary region is composed of a single unified system. Within this
region, electricity is made available in any town, public utility, house and room by means of metal
wires as a totally integrated huge network.

Generating plants, substations and transmission lines; generators, transformers, switchgear and
other high-voltage equipment; several types of control equipment, protection equipment and
auxiliary equipment; control and communication facilities in a dispatching or control centre; and
the various kinds of load facilities — all these are also composed of a very large number of small
parts or members. Individual parts play their important roles by linking with the rest of the network
system. Human operators at any part of the network can be added as important members of the
power system. We might say that a power system network is the largest and greatest artificial
system ever produced by people in the modern era.

Secondly, the human body maintains life by getting energy from the external environment, and
by processing and utilizing this energy. New cellular tissue is consequently created and old tissue is
discarded. In such a procedure, the human body continues to grow and change.

A power system can be compared in the same way. A prerequisite condition of a power system
network is that it is operated continuously as a single unified system, always adding new parts and
discarding old ones. Since long-distance power transmission was first established about a hundred
years ago, power systems have been operating and continuing to grow and change in this way, and,
apart from the failure of localized parts, have never stopped. Further, no new power system isolated
from the existing system in the same region has ever been constructed. A power system is the
ultimate inheritance succeeded by every generation of humankind.

Thirdly, humans experience hunger in just a few hours after their last meal; their energy storage
capacity is negligible in comparison with their lifetimes. In a power system such as a pumped-
storage hydro-station, for example, the capacity of any kind of battery storage system is a very small
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part of the total capacity. The power generation balance has to be maintained every second to
correspond to fluctuations or sudden changes in total load consumption. In other words, ‘simulta-
neity and equality of energy generation and energy consumption’ is a vital characteristic of
power system as well as of human body.

Fourthly, humans can continue to live even if parts of the body or organs are removed. At the
other extreme, a minute disorder in cellular tissue may be life-threatening. Such opposites can be
seen in power systems.

A power system will have been planned and constructed, and be operated, to maintain reasonable
redundancy as an essential characteristic. Thus the system may continue to operate successfully in
most cases even if a large part of it is suddenly cut off. On the contrary, the rare failure of one tiny
part, for example a protective relay (or just one of its components), may trigger a kind of domino
effect leading to a black-out.

Disruption of large part of power system network by ‘domino-effect’ means big power failure
leaded by abrupt segmentation of power system network, which may be probably caused by cascade
trips of generators caused by total imbalance of power generation and consumption which leads to
‘abnormal power frequency exceeding over or under frequency capability limits (OF/UF) of
individual generators’, ‘cascade trips of generators caused by power stability limits, Q-V stability
limits or by any other operational capability limits’, ‘cascade trips of trunk-lines/stations equipment
caused by abnormal current flow exceeding individual current capacity limits (OC), or by over or
under voltage limits (OV/UV)’, * succeeding cascade trips after fault tripping failure due to a
breaker set back or caused by mal-operation of a protective relay’ and so on, and may be perhaps
caused as of ‘these composite phenomena’. These nature of power systems is the outcome that all
the equipment and parts of the power system, regardless of their size, are closely linked and
coordinated. The opposites of toughnees with well redundancy and delicacy are the essential
nature of power systems.

Fifthly, as with the human body, a power system cannot tolerate maltreatment, serious system
disability or damage, which may cause chronic power cuts, and moreover would probably causes
extremely fatal social damages. Recovery of a damaged power system is not easy. It takes a very
long time and is expensive, or may actually be impossible. Power systems can be kept sound only
by the endeavours of dedicated engineers and other professional people.

Sixthly, and finally, almost as elaborate as the human body, all the parts of power system
networks today (including all kinds of loads) are masterpieces of the latest technology, based on a
century of accumulated knowledge, something which all electrical engineers can share proudly
together with mechanical and material engineers. Also all these things have to be succeeded to our
next generations as the indispensable social structures.
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