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Preface

Amo i colori, tempi di un anelito
inquieto, irresolvibile, vitale
spiegazione umilissima e sovrana

dei cosmici ”perché” del mio respiro.

A. Merini, Colori
(from A. Merini, Fiore di poesia, Einaudi, Torino, 1998)

Ray, wave and quantum concepts are central to diverse and seemingly in-
compatible models of light. Each model particularizes a specific ”manifesta-
tion” of light, and then corresponds to adequate physical assumptions and
formal approximations, whose domain of applicability is well established. Ac-
cordingly each model comprises its own set of geometrical and dynamical pos-
tulates with the pertinent mathematical means.

Geometrical optics models the light field as an aggregate of incoherent light
rays, naively perceived as the trace of the motion of the ”luminous corpuscles”,
which, emitted by the source, move through space in obedience to the usual
laws of mechanics. It treats light rays as lines in 3-space dimensions and is
accordingly concerned with the dynamical laws establishing how the rays bend
when propagating in inhomogeneous media described by the refractive index
function. Geometrical optics is not suited to explain interference, diffraction
and quantum coherence effects, but, in contrast, it provides a particularly
convenient means for the design of optical systems, which is based on the
purely geometrical rules of ray tracing.

Geometrical optics has developed its own mathematical framework, which
can remarkably be brought into correspondence with that of the Hamilto-
nian mechanics of point-particles, with ”time” corresponding to the arc-length
along the ray path and the mechanical ”potential” to the refractive index of
the optical medium.

Wave optics accounts for the wave characteristics of light. Originating
directly from the classical electromagnetic theory, it shares with this theory the
same system of theoretical principles and methods, which can notably be put
in correspondence with those proper to relativistic quantum mechanics. Then,
the geometry of light rays is replaced by the geometry of ”luminous” waves,
whose propagation is geometrically pictured as the transfer of the interference
shaped vibrations from one portion of the medium to the contiguous one.

Wave optics treats the light waves as complex functions of position in 3-
space dimensions and is accordingly concerned with the dynamical laws estab-
lishing how the wave function changes as the optical wave propagates through
inhomogeneous media.
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Quantum optics recovers the grainy view of geometrical optics, picturing
the light ray as a stream of particle-like entities, the photons. Whereas geo-
metrical optics deals with the influence at a macroscopic level of the medium
on the trajectory of the photon streams, quantum optics is typically concerned
with the wave-like question relevant to the coherence properties of the photon
beams and to the relevance of those properties on the interaction of light with
matter, which can correspondingly be trcated quantum mechanically. Coher-
ent and squeezed states of light arc the building concepts of quantum optics.

Wigner optics bridges between ray and wave optics. It offers the optical
phase space as the ambience and the Wigner function based technique as the
mathematical machinery to accommodate between the two opposite extremes
of light, representation: the localized ray of gecometrical optics and the unlo-
calized wave [unction of wave optics.

Notably quantum optics finds a convenient formulation in the proper phase
space with the consequent geometrical view of coherent and squeezed states
as circles and ellipses. The Wigner function methods can suitably be applied
to quantum optics as well to enable effcctive analytical means for calculating
expectation values and transition probabilities for the aforementioned states.

The purpose of the book is to introduce the reader to the optical phase-
space and to the approaches to optics based on the Wigner distribution func-
tion, that have been developed over the past 25 years or so in scveral scientific
titles. These yield the formal context, where concepts and methods of both ray
and wave optics coalesce into a unifying formalism. In this respect, emphasis
is given to the Lie algebra representation of optical systems and accordingly
to the Lie algebra view of light propagation through optical systems.

The book is made as self-contained as possible. Chapter 1 presents the
Hamiltonian equations of motion, which are basic to the development of both
the transfer matrix formalism, appropriate to paraxial ray optics (Chapters
2 and 3), and the transfer operator formalism, suited to paraxial wave op-
tics (Chapters 4 and 5). The relation of both formalisms to the Lie algebra
methods is gently displayed.

Chapter 6 introduces the Wigner distribution function, elucidating its ori-
gin taken in quantum mechanics and illustrating its properties. A host of
diverse optical signals are considered and the relevant Wigner distribution
functions are analytically evaluated and graphically shown to help the intuitive
perception of the simultaneous account of the signal in the space and spatial
frequency domains, conveyed by the Wigner distribution function. Chapter 7
frames the Wigner distribution function within the broad realm of the phase-
space signal representations, and illustrates the procedure, and the relevant
optical architectures, for displaying the Wigner distribution function of a given
signal. In Chapter 8 the laws for the transfer of the Wigner distribution func-
tion through linear optical systems are derived. Attention is drawn to the
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relation between the Wigner distribution function and the fractional Fourier
transform, which is a revealing and effective tool for the space-frequency repre-
sentation of signals (optical or not). Chapter 9 is concerned with the moments
of the Wigner distribution function and their propagation laws.

The Wigner representation is presented on the fascinating border-line be-
tween quantum mechanics and signal theory.

Chapters are made as self-consistent as possible. Indeed, the Introduction
to each chapter is conceived as a summary of the basic results of previous
chapters, which are central to those that are going to be presented. A basic
role is assigned to the diagrams, which illustrate the syllabus of each chapter,
and the figures, which confer physical reality to conceptual architectures. A
wide bibliography is given in relation to topics both carefully investigated and
briefly mentioned.

Throughout the book the calculations are kept at an accessible level; most
mathematical steps are justified. Difficulties might be encountered in connec-
tion with the algebra of operators, which do not obey the familiar rules of the
algebra of scalars. Careful and illustrative comments on the peculiar behavior
of operators are provided in § 1.4.1 in order to help the readers who are not
acquainted with the operator algebra.

It is my hope to give the flavour of the fascinating feature of optics that
enables a visible account of abstract mathematical entities, like, for instance,
symplectic matrices and metaplectic operators, represented through integral
transforms. Symplectic matrices and integral transforms, which essentially
provide the formal structures for the considerations developed in Chapters 1
to 5, are intimately related, being indeed different representations of the same
Sp(2,R) ~ Mp(2,R) group element. Firstly recognized within a purely quan-
tum mechanical context, this relation has been applied in optics in connection
with the fractional Fourier transform. The link between ray matrices and
transfer operators from the alternative viewpoint of linear canonical transfor-
mations and relevant representations, is elucidated in § 5.6. This is an example
of those parallel paths, that, explicitly illustrated or implicitly suggested in the
text or in the problems, are intended to improve the feeling for the specific
topic under consideration and to gain some insight and intuition for unforeseen
correspondences and analogies between totally different physical problems.

I am pleased to express my deep gratitude to Professor W.A.B. Evans,
whose stimulating discussions, critical comments and technical suggestions
have been precious to the completion of the book. I am greatly indebted to
Dr. A. De Angelis for his enlightening suggestions, and to Professor A. Reale
and Professor A. Scafati for their helpful comments. It is dutiful of me to
thank Dr. G. Dattoli, who introduced me to the Lie algebra theory during the
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stage of our collaboration on the quantum picture of the Free Electron Laser
dynamics. I am grateful to Dr. S. Bollanti, Dr. F. Flora and Dr. L. Mezi
for their usceful comments, and to Mrs. G. Gili, Mr. S. Lupini, Mrs. G.
Martoriati, Mrs. M.T. Paolini, Mrs. L. Santonato, Dr. S. Palmerio, Dr. B.
Robouch, Dr. N. Sacchetti and Dr. V. Violante for their constant and invalu-
able sympathy. I thank our librarians, Mrs. C. De Palo and Mrs. M. Liberati,
who at certain periods have patiently accepted the role of ”my” librarians. It
is a pleasure to thank the Optical Society of America for kindly giving me the
permission to reproduce material from Applied Optics and Optics Letters, and
Einaudi for permitting me to reproduce the lines from Merini’s poem, which
opened this Preface, my literal translation of which now closes it (below). T
express my appreciation to Professor A. Lohmann for his prompt and kind re-
sponsc to my request of reproducing material from papers by himself and his
coworkers, which appeared in Optics Communication. T am pleased to express
my gratitude to the Fondation Magritte for allowing the reproduction of the
evocatively emotional Magritte painting La corde sensible for the cover. I am
also indebted to the Elsevier production team for expertly implementing my
ideas in relation to the cover.

A joyful ”Thank you, sorellina” is directed to Dr. F. Mucci, for enthusi-
astically listening to the description of my ”conceptual castles”. A bow is for
the friends who share my passion for the theatre, for forgiving my absences
from the prelims, being forgetfully enraptured in ”mie adorate formuline”.

It is with intense emotion that my thanks goes also to zia Aida and Maria,
who could not sec the completion of the book.

1 love colours, times of a yearning
restless, irresolvable, vital,

very humble and supreme explanation
of the cosmic "why” of my breath.

Colours
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1

Hamiltonian Picture of Light Optics.
First-Order Ray Optics

1.1 Introduction

The phase space representation of light optics naturally arises from the Hamil-
tonian formulation of geometrical optics. Geometrical optics gives a simple
model for light behaviour, in which the wave character of light is ignored. It is
valid whenever light waves propagate through or around objects which are very
large compared to the wavelength of the light and when we do not examine too
closely what is happening in the proximity of shadows or foci. Accordingly, it
does not account for diffraction, interference or polarization effects. Geomet-
rical optics employs the concept of light ray [1], which we may give the naive
view as an infinitesimally thin beam of light. Several formal definitions of light
ray have been elaborated within both the corpuscular and wave theory to ac-
commodate geometrical abstraction and physical observability. All definitions
work well in certain situations, but in others are confronted with intrinsically
physical difficulties. Thus, for instance, the corpuscular view of rays as tra-
jectories of ”luminous” corpuscles confronts with the problem that the energy
density may become infinite. Likewise the wave-like view of rays as orthogonal
trajectories to the phase fronts of the light wave confronts with the difficulty
of individualizing a defined wave front in the two-wave overlap distribution.
Indeed, the ray must be thought of as a convenient and successful model which
supports our perception, and hence facilitates the formal description, of a wide
class of light phenomena. Geometrical optics establishes the geometrical rules
governing the propagation of light rays through optical systems.

The analogy of geometrical optics of light rays to Hamiltonian mechanics
of material particles is well established and effectively exploited. The Hamal-
tonian formalism was originally developed by Hamilton for optics in his 1828
paper Theory of Systems of Rays and in subsequent papers and brief notes,
published during the years from 1830 to 1837 [2.1]. In his papers, Hamilton
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formulates the problem of studying the geometry of light rays as they pass
through optical systems in terms of well-defined relations between the local
coordinates of the rays entering and emerging from the system, specified with
respect to the optical axis and properly chosen planes across the axis. He
shows that, if the ray coordinates are suitably defined, the input-output rela-
tions configure as symplectic transformations, generated by a function of the
ray variables, the characteristic function, whose functional form is determined
solely by the optical properties of the system. Later, Hamilton realized that
the same method could be applied unchanged to mechanical systems, replac-
ing the optical axis by the time axis, the light rays by the particle trajectories
and the ray-coordinates by the mechanical phase-space variables [2.2].

The phase space representation is a familiar method within the Hamiltonian
formulation of classical mechanics, which describes the dynamics of a mechan-
ical system with m degrees of freedom in terms of m generalized independent
coordinates (q,, ¢y, ..., ¢m) and the same number of canonically conjugate vari-
ables (p,,p,, ..., Pm) [3]. The mechanical phase space is the Cartesian space of
these 2m coordinates. For example, the state of a free particle at a certain
time is represented in the proper 6D phase space by a representative point,
specified by the Cartesian coordinates q = (¢z, ¢y, ¢:) and the relevant mo-
menta p = (pg, Py, P-). The motion of the particle in real space corresponds
to a trajectory in phase space. Then, the state of an ensemble of identical and
noninteracting particles at a given time corresponds to a set of points in the 6D
phasc space. The domain occupied by this set of points moves through phase
space as the particles move in real space. However, as the total number of
particles remain constant, so will the total number of phase space points. Evi-
dently a rcal density can be associated with the representative points in phase
space, and correspondingly a distribution function of density p(q.p,t) can be
defined so that p(q, p,t)dV specifies the number of representative points in the
element of volume dV in the vicinity of the point (q, p). Liouville’s theorem
states the invariance of the density of representative points along the trajec-
tory of any point, and accordingly of the volume of the phase space domain,
cven though its shape may change considerably during the motion.

Likewise the geometric-optical phase space is the 4D Cartesian space of
the ray position and momentun coordinates (¢, gy, Pz, py). However, the phase
spaces of classical mechanics and geometrical optics are globally different. The
particle momentum of classical mechanics is not restricted in value, whilst the
ray momentum of geometrical optics is confined within a circle determined by
the local refractive index through the inherent form of the optical Hamiltonian.
In the linear approximation the ray momentum is assumed to range well below
its natural limit, which then is ignored. Thus the geometric-optical phase space
of linear optics comes to be similar to the mechanical phase space.

Section 1.2 reviews the Hamiltonian formulation of geometrical optics and
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FIGURE 1.1. The Fermat extremal principle based formulation of geometrical optics mirrors
that of classical mechanics, based on the Hamilton minimal principle.

introduces the related concept of geometric-optical phase space. Section 1.3
emphasizes the symplectic nature of ray propagation, and details the suited
mathematical settings (Poisson brackets and Lie operators) to approach the in-
tegration of Hamilton’s equations for the light ray. In Sect. 1.4 the ray-transfer
operator is introduced and the relevant Lie-transformation based formalism is
described. Illustrative examples of phase-space transformations are given in
Sect. 1.5. Sections 1.6 and 1.7 illustrate the linear approximation to light-ray
propagation, which naturally yields the ray-transfer matrix formalism. Finally,
Sect. 1.8 clarifies the link between the ray-matrix approach and the cardinal
point (and planes) method.

1.2 Hamiltonian picture of light-ray propagation

We will give a brief account of the Hamiltonian formulation of geometrical
optics in order to fix the notations we adopt and to trace the conceptual path
towards the phase space representation and the inherent geometry.
Hamiltonian optics develops from Fermat’s principle of extremal optical
path, which is the optical analog of Hamilton’s principle of least action (Fig.
1.1). From Hamilton’s principle one can derive both the Lagrangian and Hamil-
tonian mechanics, related through the Legendre transformation [3]. Likewise
from Fermat’s principle one can develop the Lagrangian as well as the Hamil-
tonian formulation of optics [4]. The former yields the equations for the ray
variables in real space, while the latter the equations for the ray variables
in phase space. We will cursorily illustrate the basic steps leading to both
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r(s)=(x,y,z)
n(x,y.z)

FIGURE 1.2. Geometrical optics describes the medium by the refractive index function
n(x,y, z) and the light rays by the 3-vector of functions r(s) = (z(s),y(s), z(s)) of the arc
length s measured along the ray path.

pictures, addressing the reader to [4] for a more detailed treatment.

As a natural scenario for introducing Fermat’s principle [4, 5|, we consider
an inhomogeneous medium, occupying a certain region in the 3D space, where
we suppose a Cartesian system of coordinates (r,y, z) be assigned. The opti-
cal properties of the medium are typically described by the refractive index
n(x,y, z), given as a scalar function of space(®). A light ray is propagating in
the medium along some trajectory. Regarded as a line in the 3D space, the ray
can accordingly be described by the position vector r(s) = (z(s),y(s), 2(s))
for points on the ray, with the coordinates being functions of the arc length s
measured along the ray path with respect to a chosen point (Fig. 1.2).

Fermat’s principle combines the geometrical and physical aspects of the ray
propagation through the concept of optical path.

We recall that given two points P, and P, and a curve C connecting them,
the geometrical path length £(C) from P, to P, along C is defined as the
length of C and hence is formally given by the line integral

Pa
£(C) = ds, (121}
Jpy

performed along C from P, to P,; s denotes the arc length measured along the

path and ds =v/dz*+dy®+d-* is the infinitesimal arc length.
Correspondingly, the optical path length L (C) along the ray trajectory C

“ We will consider only linear spatially nondispersive isotropic media, whose refractive
index function is accordingly dependent on position and independent of direction. Hence we
will distinguish only between homogeneous and inhomogeneous media, according to whether
the scalar index function is uniform or changes from point to point within the medium.



