KETEYNHBFAE (ZEDR)

SECOND EDITION

THE

PROGRAMMING
LANGUAGE

CiEFIZITIES
(FZRR)

Brian W. Kernighan
Dennis M. Ritchie

%ﬂ-‘-ké *H B #t ¢ PRENTICE HALL

f s

SELP

CEFRITES TI978FEH TE R, e HENHEREH
T—H%Em CESHETARENZN. 1988FEXEERMARS
MCIBEHIEXHIITH TANSI ChrE. AP E MR RNk
FRAACIESH. £PN\E, 34 LIESHEES 2 BiRkR
BEFSREN; 325R 4 BB S5EFEN;, 5185 554,
6.4, 7HWMASHY; 8 UNXZLRE. BEMFEL ASEF
i, BAREREE CIBEENTHIE.

A i] b L re B
Prentice Hall S EHPES A

Prentice Hall 2 {tt R & Z M AR, BHT A0 K
MEEMR. 19964F 1§ 4 K% i ikt SPrentice Hall’Zx] &1k,
HEH I RULBE R EH, AR, DIRENEEE,

1. Computer Networks 3rd Ed
CHFRALMZE =R 83211)
2. Distributed O eratin% Systems
(i ABRIERSE 62811)
3. The C Programming Language 2nd Ed
CEFEINET HM 2841)
4. Data Structures with C++
EHRLEHC++IE S A 91671)
5. Multimedia: Computing, Communications & Applications
(BEAEEAR: W8H, ERENA 87611)
6. Computer Organization and Architecture 4th Ed
(HEIAHGEH: RS U 6967)
7. Use CASE Maps for Object-Oriented Systems ’
(HITEIM S RGO 32470 ISBN 7-302-02412-X

87302"024125">

SEM: 23.00 TG

._,L._I.u_—ﬂ- _...u_

THE

C
PROGRAMMING
LANGUAGE

Second Edition

C
BFRHES
(5 =h0)

Brian W. Kernighan
Dennis M. Ritchie

EEKFEHR

Prentice-Hall International, Inc.

(R)FEF 1585

The C Programming language 2nd Ed/Brian W. Kernighan, Dennis M. Ritchie
© 1988 by Prentice Hall, Inc.

Original edition published by Prentice Hall, inc., a Simon & Schuster Company.
Prentice Hall 23] BAUEHAE AL AE o [{ 58 9 (A5 s 0T R
) I AR AT A AR,

AT P2, K22t R A5 1 A 85, A AT AT 7 CHb 28 Y7 sl el

P EIEH Prentice Hall Inc BB HHFE, THRZEREHE,
AU F AL R 810 5 :01-97-0168
BHERSE (CIp) i3

C ﬁr?&ﬁ'ig%‘:%:ﬂﬁ:ﬁx/(%)ﬁfﬁ?fﬁm(}(emighan, B.W.), () H4
(Ritchie, D. M.) 3 . — JL50. i 4 K% i i At 1997. 1
(RE¥EHENEEAS HEHR)

ISBN 7-302-02412-X

I.C+ N.05- Q@ I.CEE-BITFIEIT- %SR- 8-
IV.TP312C

ot [A 54 CIP BB 7(96) 48 25163 &

G TR R (L AT AR AL Y, E4R 100084)
EPRI# . WHERFENR

RATH : FrERIE B B R AT

A 850 1168 1/32 EPdk. 9

W 1997 43 HE 1R 1997 4 6 %8 2 IRENK
5. ISBN 7-302-02412-X/TP- 1214
¥(. 2001~ 5000
ffr: 23.00 JC

TR E FREEWE, TR ERERER
B, i R ERER K RI IR S FESHILES
I E PR AR S W B s e SN E 2 5 o EEPR . 1F
J R TR, AR A 5 B SR AT REAT O Sk A5 18 32 i 1Y
RE1, EAEEAR, 16T B A& 58 i 2L 17 41 SRR AU B
MBS % T I, 16 E B A0 I K SR B K"
B FE: AR EN RN LB RETT R F, £RXHAHIE
BLE T X TIRFE I 22 B A B2 2R, A S R BRIT 3 % b P ™
RZOh, BAEF L £V IRBUEIT BRI (HE L EXOTHE TR
F—EREMN BN EREMIENBFSH . HHEXT
T 75 2, FABRIE T 7 AT ALRL2 07 T B iRUAS B B0kt , 24T
FENHiRfLo Prentice Hall 22 8] Al 4 K H AL XK & 1E7F B bR
SEHEK PRI B SN TR E w452 AL, D90 A (13R44 T #eE 43, A
{5 20 i LM B 7 A U B R

TR it

Prentice Hall 23]

1996.11

Preface

The computing world has undergone a revolution since the publication of
The C Programming Language in 1978. Big computers are much bigger, and
personal computers have capabilities that rival the mainframes of a decade ago.
During this time, C has changed too, although only modestly, and it has spread
far beyond its origins as the language of the UNIX operating system.

The growing popularity of C, the changes in the language over the years,
and the creation of compilers by groups not involved in its design, combined to
demonstrate a need for a more precise and more contemporary definition of the
language than the first edition of this book provided. In 1983, the American
National Standards Institute (ANSI) established a committee whose goal was to
produce “an unambiguous and machine-independent definition of the language
C,” while still retaining its spirit. The result is the ANSI standard for C.

The standard formalizes constructions that were hinted at but not described
in the first edition, particularly structure assignment and enumerations. It pro-
vides a new form of function declaration that permits cross-checking of defini-
tion with use. It specifies a standard library, with an extensive set of functions
for performing input and output, memory management, string manipulation,
and similar tasks. It makes precise the behavior of features that were not
spelled out in the original definition, and at the same time states explicitly
which aspects of the language remain machine-dependent.

This second edition of The C Programming Language describes C as defined
by the ANSI standard. Although we have noted the places where the language
has evolved, we have chosen to write exclusively in the new form. For the most
part, this makes no significant difference; the most visible change is the new
form of function declaration and definition. Modern compilers already support
most features of the standard.

We have tried to retain the brevity of the first edition. C is not a big
language, and it is not well served by a big book. We have improved the exposi-
tion of critical features, such as pointers, that are central to C programming.
We have refined the original examples, and have added new examples in several
chapters. For instance, the treatment of complicated declarations is augmented
by programs that convert declarations into words and vice versa. As before, all

X PREFACE

examples have been tested directly from the text, which is in machine-readable
form.

Appendix A, the reference manual, is not the standard, but our attempt to
convey the essentials of the standard in a smaller space. It is meant for easy
comprehension by programmers, but not as a definition for compiler writers—
that role properly belongs to the standard itself. Appendix B is a summary of
the facilities of the standard library. It too is meant for reference by program-
mers, not implementers. Appendix C is a concise summary of the changes from
the original version.

As we said in the preface to the first edition, C “wears well as one’s experi-
ence with it grows.” With a decade more experience, we still feel that way.
We hope that this book will help you to learn C and to use it well.

We are deeply indebted to friends who helped us to produce this second edi-
tion. Jon Bentley, Doug Gwyn, Doug Mcllroy, Peter Nelson, and Rob Pike
gave us perceptive comments on almost every page of draft manuscripts. We
are grateful for careful reading by Al Aho, Dennis Allison, Joe Campbell, G. R.
Emlin, Karen Fortgang, Allen Holub, Andrew Hume, Dave Kristol, John
Linderman, Dave Prosser, Gene Spafford, and Chris Van Wyk. We also
received helpful suggestions from Bill Cheswick, Mark Kernighan, Andy
Koenig, Robin Lake, Tom London, Jim Reeds, Clovis Tondo, and Peter Wein-
berger. Dave Prosser answered many detailed questions about the ANSI stand-
ard. We used Bjarne Stroustrup’s C++ translator extensively for local testing
of our programs, and Dave Kristol provided us with an ANSI C compiler for
final testing. Rich Drechsler helped greatly with typesetting.

Our sincere thanks to all.

Brian W. Kernighan
Dennis M. Ritchie

Preface to the First Edition

C is a general-purpose programming language which features economy of
expression, modern control flow and data structures, and a rich set of operators.
C is not a “very high level” language, nor a “big” one, and is not specialized to
any particular area of application. But its absence of restrictions and its gen-
erality make it more convenient and effective for many tasks than supposedly
more powerful languages.

C was originally designed for and implemented on the UNIX operating sys-
tem on the DEC PDP-11, by Dennis Ritchie. The operating system, the C com-
piler, and essentially all UNIX applications programs (including all of the
software used to prepare this book) are written in C. Production compilers also
exist for several other machines, including the IBM System/370, the Honeywell
6000, and the Interdata 8/32. C is not tied to any particular hardware or sys-
tem, however, and it is easy to write programs that will run without change on
any machine that supports C.

This book is meant to help the reader learn how to program in C. It con-
tains a tutorial introduction to get new users started as soon as possible,
separate chapters on each major feature, and a reference manual. Most of the
treatment is based on reading, writing and revising examples, rather than on
mere statements of rules. For the most part, the examples are complete, real
programs, rather than isolated fragments. All examples have been tested
directly from the text, which is in machine-readable form. Besides showing how
to make effective use of the language, we have also tried where possible to illus-
trate useful algorithms and principles of good style and sound design.

The book is not an introductory programming manual; it assumes some fam-
iliarity with basic programming concepts like variables, assignment statements,
loops, and functions. Nonetheless, a novice programmer should be able to read
along and pick up the language, although access to a more knowledgeable col-
league will help.

In our experience, C has proven to be a pleasant, expressive, and versatile
language for a wide variety of programs. It is easy to learn, and it wears well
as one’s experience with it grows. We hope that this book will help you to use it
well.

xi

xii PREFACE TO THE IST EDITION

The thoughtful criticisms and suggestions of many friends and colleagues
have added greatly to this book and to our pleasure in writing it. In particular,
Mike Bianchi, Jim Blue, Stu Feldman, Doug Mcllroy, Bill Roome, Bob Rosin,
and Larry Rosler all read multiple versions with care. We are also indebted to
Al Aho, Steve Bourne, Dan Dvorak, Chuck Haley, Debbie Haley, Marion
Harris, Rick Holt, Steve Johnson, John Mashey, Bob Mitze, Ralph Muha, Peter
Nelson, Elliot Pinson, Bill Plauger, Jerry Spivack, Ken Thompson, and Peter
Weinberger for helpful comments at various stages, and to Mike Lesk and Joe
Ossanna for invaluable assistance with typesetting.

Brian W. Kernighan
Dennis M. Ritchie

Preface

Preface to the First Edition

Introduction

Chapter 1.
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

Chapter 2.

29

2.10
2.11
2.12

Chapter 3.
3.1
3.2

A Tutorial Introduction
Getting Started

Variables and Arithmetic Expressions
The For Statement

Symbolic Constants
Character Input and Output
Arrays

Functions

Arguments—Call by Value
Character Arrays

External Variables and Scope

Types, Operators, and Expressions
Variable Names

Data Types and Sizes

Constants

Declarations

Arithmetic Operators

Relational and Logical Operators
Type Conversions

Increment and Decrement Operators
Bitwise Operators

Assignment Operators and Expressions
Conditional Expressions

Precedence and Order of Evaluation

Control Flow
Statements and Blocks
If-Else

Contents

vi THE C PROGRAMMING LANGUAGE

33
34
35
3.6
3.7
38

Chapter 4.
4.1
4.2

4.11

Chapter 5.
5.1
52
53
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

Chapter 6.

Chapter 7.
7.1
72

Else-If

Switch

Loops— While and For
Loops—Do-while
Break and Continue
Goto and Labels

Functions and Program Structure
Basics of Functions

Functions Returning Non-integers
External Variables

Scope Rules

Header Files

Static Variables

Register Variables

Block Structure

Initialization

Recursion

The C Preprocessor

Pointers and Arrays

Pointers and Addresses

Pointers and Function Arguments
Pointers and Arrays

Address Arithmetic

Character Pointers and Functions
Pointer Arrays; Pointers to Pointers
Multi-dimensional Arrays
Initialization of Pointer Arrays
Pointers vs. Multi-dimensional Arrays
Command-line Arguments

Pointers to Functions

Complicated Declarations

Structures

Basics of Structures
Structures and Functions
Arrays of Structures
Pointers to Structures
Self-referential Structures
Table Lookup

Typedef

Unions

Bit-fields

Input and Output
Standard Input and Output
Formatted Output—Printf

CONTENTS

57
58
60
63
64
65

67
67
71
73
80
81
83

143
146
147
149

151
151
153

THE C PROGRAMMING LANGUAGE

Chapter 8.
8.1
8.2
83
8.4
8.5
8.6
8.7

Variable-length Argument Lists
Formatted Input—Scanf

File Access

Error Handling—Stderr and Exit
Line Input and Output
Miscellaneous Functions

The UNIX System Interface

File Descriptors

Low Level I/O—Read and Write

Open, Creat, Close, Unlink

Random Access—Lseek

Example—An Implementation of Fopen and Getc
Example—Listing Directories

Example—A Storage Allocator

Appendix A. Reference Manual

Al
A2
A3
A4

Introduction

Lexical Conventions
Syntax Notation
Meaning of Identifiers
Objects and Lvalues
Conversions
Expressions
Declarations
Statements

External Declarations
Scope and Linkage
Preprocessing
Grammar

Appendix B. Standard Library

Bl
B2

BI10
Bll1

Input and Output: <stdio.h>
Character Class Tests: <ctype.h>
String Functions: <string.h>
Mathematical Functions: <math.h>
Utility Functions: <stdlib.h>
Diagnostics: <assert.h>

Variable Argument Lists: <stdarg.h>
Non-local Jumps: <setjmp.h>
Signals: <signal.h>

Date and Time Functions: <time.h>
Implementation-defined Limits: <limits.h> and <float.h>

Appendix C. Summary of Changes

Index

CONTENTS

vii

155
157
160
163
164
166

169
169
170
172
174
175
179
185

191
191
191
194
195
197
197
200
210
222
225
227
228
234

241
241
248
249
250
251
253
254
254
255
255
257

259
263

Introduction

C is a general-purpose programming language. It has been closely associ-
ated with the UNIX system where it was developed, since both the system and
most of the programs that run on it are written in C. The language, however, is
not tied to any one operating system or machine; and although it has been
called a “system programming language” because it is useful for writing com-
pilers and operating systems, it has been used equally well to write major pro-
grams in many different domains.

Many of the important ideas of C stem from the language BCPL, developed
by Martin Richards. The influence of BCPL on C proceeded indirectly through
the language B, which was written by Ken Thompson in 1970 for the first
UNIX system on the DEC PDP-7.

BCPL and B are “typeless” languages. By contrast, C provides a variety of
data types. The fundamental types are characters, and integers and floating-
point numbers of several sizes. In addition, there is a hierarchy of derived data
types created with pointers, arrays, structures, and unions. Expressions are
formed from operators and operands; any expression, including an assignment or
a function call, can be a statement. Pointers provide for machine-independent
address arithmetic.

C provides the fundamental control-flow constructions required for well-
structured programs: statement grouping, decision making (if-else), selecting
one of a set of possible cases (switch), looping with the termination test at the
top (while, for) or at the bottom (do), and early loop exit (break).

Functions may return values of basic types, structures, unions, or pointers.
Any function may be called recursively. Local variables are typically
“automatic,” or created anew with each invocation. Function definitions may
not be nested but variables may be declared in a block-structured fashion. The
functions of a C program may exist in separate source files that are compiled
separately. Variables may be internal to a function, external but known only
within a single source file, or visible to the entire program.

A preprocessing step performs macro substitution on program text, inclusion
of other source files, and conditional compilation.

C is a relatively “low level” language. This characterization is not

2 INTRODUCTION

pejorative; it simply means that C deals with the same sort of objects that most
computers do, namely characters, numbers, and addresses. These may be com-
bined and moved about with the arithmetic and logical operators implemented
by real machines.

C provides no operations to deal directly with composite objects such as
character strings, sets, lists, or arrays. There are no operations that manipulate
an entire array or string, although structures may be copied as a unit. The
language does not define any storage allocation facility other than static defini-
tion and the stack discipline provided by the local variables of functions; there is
no heap or garbage collection. Finally, C itself provides no input/output facili-
ties; there are no READ or WRITE statements, and no built-in file access
methods. All of these higher-level mechanisms must be provided by explicitly-
called functions. Most C implementations have included a reasonably standard
collection of such functions.

Similarly, C offers only straightforward, single-thread control flow: tests,
loops, grouping, and subprograms, but not multiprogramming, parallel opera-
tions, synchronization, or coroutines.

Although the absence of some of these features may seem like a grave defi-
ciency (“You mean I have to call a function to compare two character
strings?”), keeping the language down to modest size has real benefits. Since C
is relatively small, it can be described in a small space, and learned quickly. A
programmer can reasonably expect to know and understand and indeed regu-
larly use the entire language.

For many years, the definition of C was the reference manual in the first
edition of The C Programming Language. In 1983, the American National
Standards Institute (ANSI) established a committee to provide a modern,
comprehensive definition of C. The resulting definition, the ANSI standard, or
“ANSI C,” was completed late in 1988. Most of the features of the standard
are already supported by modern compilers.

The standard is based on the original reference manual. The language is
relatively little changed; one of the goals of the standard was to make sure that
most existing programs would remain valid, or, failing that, that compilers could
produce warnings of new behavior.

For most programmers, the most important change is a new syntax for
declaring and defining functions. A function declaration can now include a
description of the arguments of the function; the definition syntax changes to
match. This extra information makes it much easier for compilers to detect
errors caused by mismatched arguments; in our experience, it is a very useful
addition to the language.

There are other sn.all-scale language changes. Structure assignment and
enumerations, which had been widely available, are now officially part of the
language. Floating-point computations may now be done in single precision.
The properties of arithmetic, especially for unsigned types, are clarified. The
preprocessor is more elaborate. Most of these changes will have only minor

