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NOTATION

4 = amFlitude, area

Ay, A,, ... = coefficients

a = amplitude, constant, distance

a. b = coefficients, dimensions

By, By, ... = coefficients, constants of integration

by, by, ... = coefficients

Cy, Cy, ... — constants of integration

¢ = damping constant

Cy = equivalent damping constant

<1, €3,... = coefficients

D = flexural rigidity of plate

Dy, D,,... — constants of integration

, = diameter

dy. dg, ... = coefficients

E = modulus of elasticity

EA = tensile stiffness

ET = flexural rigidity of beam

e = eccentricity, exponential constant (2.71828...)

F = force

f = deflection

fs = static displacement

G = shear modulus

GI, = torsional rigidity

g = acceleration of gravity

h = height, thickness

I = moment of inertia of an area

Iy = polar moment of inertia of an area

i = gear ratio

J = moment of inertia of mass

k = constant in general or spring constant in particular

L, 1 = length

M = moment or torque

M, = bending moment

m = Inass

N = longitudinal force, number of cycles, power

n = constant, damping factor, number in general, number of cycles
per second in particular

p = force

P = critical force

P = natural circular frequency

Px = natural circular frequency of damped vibration

Q = generalized force, shearing force, weight

q = generalized co-ordinate, load per unit length, pressure

R ==

resisting force in general or dry friction force in particular
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y
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« (alpha) —
B (beta) =
v (gamma) —
O (delta) =
O =
¢ (epsilon) —
€, =
.

% (kappa) —
A(lambda) =
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T (tau) —
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0 (theta) =

radius

deflection

polar co-ordinates
impulse

- friction force, kinetic ener eriod of vibration
5 v,

time

— potentlial energy

longitudinal displacement, radial displacement
deflection, velocity

- initial velocity
- weight, work

deflection
displacement

initial displacement
static displacement

— rectangular co-ordinates

displacement

initial displacement

angular acceleration, phase angle or some other angle
repetition factor

phase angle or some other angle. shear angle, specific weight
logarithmic decrement

unit displacement or influence coefficient

angle, strain

strain in radial direction

strain in circumferential direction

angle, angular displacement

amplitude ratio, correction factor

characteristic number

amplification (magnification) factor. Poisson’s ratio
transmissibility

3.14159...

mass density. radius of curvature, radius of gyration
stress

radial stress

circumferential stress

shearing stress, time

angle of rotation or angular displacement

energy dissipated per cycle

angle

angular velocity, circular frequency

critical speed



INTRODUCTION

The periodic nature of operation of most machines determines the
periodicity of loading and deformation of both their individual
mem bers and those structures which serve as supports or foundations;
it may be said that elastic vibrations accompany the operation of
each machine.

In some cases, however, vibrations occur in the absence of periodic
excitation. These are, for instance, relatively simple processes of
free vibration developing upon a sudden disturbance of the state
of equilibrium of a mechanical system as well as more complicated
and, at the same time, less studied processes such as self-excited
vibrations.

It is difficult to indicate a domain of engineering in which the
study of elastic vibrations would not be an urgent problem. Much
attention is given by investigators to vibration of structures of widely
differing purposes: turbine rotors, internal-combustion engine shafts,
turbine blades, propellers, automobiles and railroad cars, ships
and aircraft, engineering structures, industrial-building floors, parts
worked on metal-cutting machines, jigging conveyors, elc.

In certain cases vibrations impede the normal service or even
directly endanger the strength by gradually promoting fatigue
failure; in such cases the theory may indicate ways of reducing de-
trimental vibrations. At the same time it enables one to substantiate
and optimize the manufacturing processes which use vibrations pur-
posefully (as in jigging conveyors).

For all the variety of problems treated in the theory of elastic
vibration there is a deep intrinsic connection between outwardly
different problems. The existence of common laws forms the funda-
mental basis for the general theory which enables one to consider
simultaneously wide classes of phenomena covering a host of parti-
cular problems.

We may distinguish at least the following five sufficiently inde-
pendent categories of vibratory processes differing in their nature:

free vibrations, i.e., vibrations which are performed by a mecha-
nical system having no energy supply from outside if the system
is disturbed from its position of equilibrium and then released;
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critical stgtes of rotating shafts and rotors which consist in a
spdden increase in the deflections of their axes at definite speeds of
rotation (or in definite ranges of speeds);

forced vibrations which result when the mechanical system is acted
on by fluctuating external forces (driving forces);

parametric vibrations caused by periodic variations of the para-
meters of a system (for example, its stiffness);

self-excited vibrations, i.e., vibratory processes which are main-
tained by constant sources of energy of a nonvibratory nature.

Each of these categories of vibratory processes is discussed in the
appropriate chapter.



CHAPTER |

FUNDAMENTALS

1. Number of Degrees of Freedom of an Elastic System

The complexity of a theoretical analysis of vibration depends
largely on the number of degrees of freedom of the mechanical sy-
stem in question. The number of degrees of freedom of a mechanical
system is defined as the number of independent co-ordinates which
determine uniquely the positions of all particles of the system.

In dynamic problems, particularly in vibration problems, the
positions of the particles of a system vary with time so that the
above co-ordinates are functions of time. The fundamental problem
of dynamic analysis is to find these functions, i.e., to determine the
motion of the system. It is an easy matter then to find strains, stres-
ses and internal forces in the constraints of the system.

Every mechanical system involves an infinite number of particles
and consequently the number of degrees of freedom is always in-
finite. However, in solving practical problems use is generally made
of simplified schemes which are characterized by a finite number of
degrees of freedom. In such design schemes some (the lightest) parts
of the system are assumed to be massless and are represented as de-
formable inertialess constraints; the bodies for which the property
of inertia is retained in the design scheme are then considered to be
particles (“concentrated masses”) or absolutely rigid bodies.

In an endeavour to simplify the design scheme one should re-
member that the neglect of all inertia properties of a given system
deprives the problem of dynamic specific features.

Consider, for instance, a massless spring (Fig. 1a) with a force P (¢),
given as a function of time, applied to its end. If % is the stiffness
of the spring, the displacement z of its end is defined by the ordinary
static formula

r = T . (11)

This formulation of the problem is not really dynamic though the
displacement thus found is not constant but represents a function
of time. The true dynamics of processes in real mechanical systems
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is associated with the property of inertia and this property must be
reflected in one way or another in the design scheme.

A simple example of a dynamic system with one degree of freedom
is represented in Fig. 1b. Here we can no longer work with purely
static relationships; thus, we observe that the reaction R of the
spring is not equal to the external force P.

1 - Pl R N Pl
—MMWW—— ~
(a) (c)
7 %ﬂ/// 2“,,“ R’
7 7 7 74
(6) (d)
Fig. |

The differential equation of motion of the mass in the z direction
(Fig. 1¢) is of the form

P Ry= m..r., (1.2)

where R, = —Aku is the projection of the reaction of the spring on
the « axis. Thus we obtain

m ke =P (). (1.3)

Unlike expression (1.1) which serves to calculate z directly, re-
lation (1.3) represents a differential equation in the function z. To
find the form of this function it is necessary to integrate the diffe-
rential equation (1.3). After solving liq. (1.3) the function x — z (¢)
is used to find internal forces, stresses, ete.

It may be said that in the above example the function x alone
defines completely all the elements of the state of strain at any in-
stant. Such systems possess one degree of freedom.

The systems shown in Fig. 2 fall into this type. The characteri-
stic co-ordinate for the diagram of Fig. 2a is the ordinate y of the
mass, while for the diagram of Fig. 26 it is the angle of rotation ¢
of the rigid body (in both cases the elastic constraints are assumed
to be massless).

The systems represented in Fig. 2¢, d, e, f each have fwo degrees of
jreedom. In the diagram of Fig. 2¢ there are two concentrated masses
and the motion of the system is completely determined by two func-
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