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PREFACE

Evaporative self-assembly of nonvolatile solutes such as polymers, colloids, and
DNA has been widely recognized as a non-lithographic means of producing a
diverse range of intriguing surface patterns in simple, rapid, inexpensive and
scalable manner. The ability to engineer an evaporative self-assembly process
that yields dissipative, complex and ordered structures, e.g., concentric coffee
rings, fingering patterns, and thin structured films of colloids, over large areas
offers tremendous potential for applications in electronics, optoelectronics,
sensors, information processing and data storage devices, nanotechnology, and
biotechnology. Many novel methods have been recently suggested for
manipulating deposition patterns through control of evaporative flux, heat, or
momentum transfer in the drying droplet, droplet geometry, substrate properties,
etc. Some of the phenomena involved in pattern formation can be understood and
modeled through a basic transport analysis of evaporation and evaporation-
induced flow.

This book provides a comprehensive framework of specific topics in
evaporative self-assembly. The current state-of-the-art is organized into eight
chapters. Each chapter consists of an introduction which gives a brief survey on
the topic, a detailed review on potential applications of techniques as well as
highly ordered structures produced by the techniques, and an outlook discussing
experimental and/or theoretical challenges to be solved.

The first chapter concerns the methods of controlling droplet-drying pattern
formation, as well as the progress that has been made in modeling the related
mass and heat transport, and fluid flow. This chapter focuses on analytical or
partially analytical solutions to the drying droplet problem, especially analytical
solutions obtained using the lubrication approximation for the flow field in
relatively flat droplets, including effects of thermal and solutal Marangoni flows,
and their influence on drying patterns.

Chapter two is devoted to the experimental reports of patterned deposition of
particles on substrates by convective assembly methods. A brief review of the
prevailing mechanisms in convective assembly is given, followed by the detailed
discussion on the spontaneous formation of colloidal structures harnessing
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hydrodynamic instabilities as well as on the use of templates to guide colloidal
assembly.

Related to the second chapter, Chapter three reviews the ubiquitous nature of
the convective assembly process to deposit coatings and nanostructures made
from materials spanning the colloidal regime, from nanoparticles to living cells,
and beyond. Moreover, it briefly explores some recent applications of these
materials made by convective assembly, including optical coatings, sensors, and
structural bases for even more advanced colloidal scale architectures.

In the fourth chapter, a comprehensive summary on an unconventional
surface patterning paradigm, Langmuir-Blodgett patterning, for large-area
patterning with mesostructured features based on interfacial instability at the
three phase contact line is provided. These features have lateral dimensions
between nano and micro scales over wafer-scaled size.

Along this line, Chapter five describes dip coating as a simple yet powerful
technique to pattern and assemble nanomaterials through regulating the
dewetting process of their dispersions. A few examples of wafer scale assemblies
are given, including linear nanoparticles arrays, aligned nanowire arrays, and 2D
assembly of flat graphene oxide monolayers.

“Breath Figure Templated Assembly” of nano/microstructured organic
polymer films is provided in Chapter six. These intriguing structures, which
mimic the behavior of dew or chemical vapor deposition, comprise of drops with
range of self-similar sizes, and form through coalescence assisted growth. Using
experiments and theory, the role of various parameters that contribute to the
formation of ordered assembly is examined.

Chapter seven is focused on evaporative self-assembly of a wide range of
polymers and nanocrystals into highly ordered complex structures, including
periodic dotted arrays and stripes, a family of concentric patterns, spokes,
fingers, and hierarchical structures, by controlling the evaporation of microfluids
in confined geometries that are composed of two parallel plates, cylindrical
tubes, and a curve surface on a flat substrate.

Chapter eight summaries the use of microfabricated surface relief features to
control the dewetting and evaporation processes for the generation of various
large arrays of micro/nanostructures, including stretched DNA nanostrands,
functionalized nanowires, and micro/nanoparticles, for a variety of applications
such as novel DNA chips, multiplex sensors, and nanoelectronics.

We are pleased to have the opportunity to be part of the collection of reviews
by established leaders and emerging researchers. The future of evaporative self-
assembly is bright and appears to be limited, at present, by imagination of
methods to control evaporation process and the associated capillary flow. A wide
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spectrum of complex ordered structures can thus be created for use in chemical
detection, combinatorial chemistry, photonics, optoelectronics, microfluidic
devices, nanotechnology, DNA/RNA microarrays, gene mapping of DNA, and
high-throughput drug discovery. This book is intended for materials chemist,
chemical engineer, bioengineer, materials scientist, materials engineer, surface
scientist, applied physicist, condensed matter physicist, and theoretical physicist
in academia and industry. This book can be adapted for a graduate course in
surface patterning of soft and hard nanostructured materials or special topic in
chemical engineering and materials science and engineering.

I acknowledge all of the authors who contribute to this book, and the help
provided by Lei Zhao and Matthew Goodman at Iowa State University during the
editing process of the book. I also thank Hwee Yun Tan and Rhaimie B Wahap
of World Scientific Publishing Company for their remarkable patience and
ensuring a finished product that I am proud of.
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CHAPTER 1

DRYING A SESSILE DROPLET: IMAGING AND ANALYSIS OF
TRANSPORT AND DEPOSITION PATTERNS

Hua Hu and Ronald G. Larson”

Corporate Engineering Technical Laboratory, The Procter & Gamble Company,
West Chest, OH 45069, USA

Department of Chemical Engineering, University of Michigan,
Ann Arbor, MI 48103, USA
“rlarson@umich.edu

Flows in small drying droplets are important in many deposition processes,
including those used for biotechnology, printing, coating, and production of
electronic and optical materials. Many novel methods have been recently
suggested for manipulating deposition patterns through control of heat, mass, or
momentum transfer in the drying droplet. Here, we review these applications
and methods of controlling droplet-drying pattern formation, as well as the
progress that has been made in modeling the related mass and heat transport, and
fluid flow. We focus on analytical or partially analytical solutions to the drying
droplet problem, especially analytical solutions obtained using the lubrication
approximation for the flow field in relatively flat droplets, including effects of
thermal and solutal Marangoni flows, and their influence on drying patterns.

1.1. Introduction

Over the last decade, there has been a surge of scientific and technological
interest in the flow and deposition of materials in drying sessile droplets.
Scientific interest has been stimulated by the beautiful analysis by Deegan et
al."” of the common observation of rings (i.e., “coffee rings”, see Figure 1.1),
rather than spots, left on substrates by dried solute-containing water droplets,
which we will review shortly. In addition, the drying droplet has been exploited
as a simple microfluidic method for producing patterned deposits for use in
biotechnology, nano-materials assembly, ink-jet printing, and so on. The number
of potential applications has been expanded by clever manipulations of substrates
and drying conditions.
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Fig. 1.1. Stain formed on a substrate after a coffee droplet dries out. [Reprinted with permission
from Ref. 1, R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, and T.A. Witten. Nature
389, 827-829 (1997). Copyright @ Macmillan Publishers Ltd.]

A wide range of droplet deposition patterns has been achieved through the use
of different solutes, geometrical and chemical patterning of substrates, patterning
of evaporation, or confinement of the drying liquid. A collage of some of the
most arresting patterns, generated by the drying of droplets containing colloids,
polymers, surfactants, nanoparticles, and other materials, is shown in Figures 1.2-
1.9. Figures 1.2a-j shows complex colloid deposition structures at various length
scales that depend on initial colloid concentration in the drying water droplet.’
Truskett and Stebe,' on the other hand, demonstrated that by covering the free
surface of a colloid-containing droplet with a surfactant film that formed various
two dimensional phases, they could produce a network pattern of particle
deposits; see Figure 1.3. Later Vakarelski and coworkers’ formed gold
nanoparticle wires on substrates using surfactant to control the stability of the
liquid bridges that eventually formed the wires; see Figure 1.4. Muthukumar and
coworkers reported the crystallization of concentric rings from a salt-containing
droplet,” which they attributed to periodic crystallization of supersaturated
solution; see Figure 1.5. Takhistov and Chang’ showed a variety of deposition
patterns created by crystallizable solutes and colloids on hydrophobic and
hydrophilic substrates; see Figure 1.6. Drying droplets containing polymers can
also produce novel depositions on substrates.*'" For example, Lin and
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Granick® produced multi-rings of poly(2-methoxy-5-(2-ethylhexyloxy)-1 4
phenylenevinylene) (MEH-PPV) from a drying droplet confined between crossed
cylinders of freshly cleaved mica. Kajiya and coworkers’"" reported that polymer
deposited from a drying droplet piles up at the edge of the droplet in the early

stage of drying, while later a polymer crusts forms on the droplet surface and
buckles at the end of drying.

Fig. 1.2. Effect of concentration of 0.1 um particles on deposition patterns and micro-structures
obtained by Deegan.” The left column shows the entire droplet stain for initial volume fractions
(a) 1%, (b) 0.25%, (c) 0.13%, and (d) 0.063%. Fig. (e) shows a close-up of the stain in (a). (f)-(j)
are multiple level of images for a single concentration. [Reprinted with permission from Ref. 2,
R.D. Deegan. Phys. Rev. E. 61, 475-485 (2000). Copyright @ American Physical Society.]
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Nanoparticle deposits®'"'* and carbon nanotube wires'” have also been laid
down by drying droplets; see Figure 1.7. Geometric patterning is also possible,
for example, by evaporative lithography'*'® in which evaporation flux patterns
are manipulated using a mask that has an array of holes over a drying droplet. As
the droplet dries out, particles segregate on the substrate under the holes in the
mask; see Figure 1.8. Deposition patterns can also be controlled by drying
droplets in a confined geometry.*'*"” For example, Hong and coworkers'® dried a
droplet of MEH-PPV confined between an inverted pyramid and a substrate to
produce periodic rectangular patterns on the substrates; see Figure 1.9. Particle
patterns can also be induced by drying on nonplanar substrates,® or on
chemically patterned ones."”"” For examples, Fan and Stebe' produced a regular
array of particle deposits by drying droplets on substrates with patterned
hydrophobicity.

A related problem is the drying of a thin fluid filament, created for example
by inkjet printing. Yarin et al® deposited a filament containing a dense
suspension of gold nanoparticles and modeled the flow of liquid within the
deposited filament as a filtration flow through the porous medium created by the
drying suspension. The resulting deposit contained a dent in the middle of the
profile across the filament’s width, which they attributed to a non-uniform
consolidation of the porous phase upon contact with the solid phase.

Fig. 1.3. Effects of surfactant coatings on colloidal deposition patterns obtained by Truskett and
Stebe.* (a) Polygonal network resulting from Rayleigh-Benard cells with different length scales and
shapes. (b) Irregular shapes observed with SEM for a network of Benard cells. [Reprinted with
permission from Ref. 4, V.N. Truskett and K.J. Stebe. Langmuir 19, 8271-8279 (2003). Copyright
@ American Chemical Society.]



