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Preface

We give an overview of what complex analysis is about and why it is im-
portant. As the student must have learnt the notion of a complex number
at some point, we will use that familiarity in our discussion here. Later on,
starting from Chapter 1 onwards, we will start things from scratch again.
So the reader should not worry about being lost in this preface!

What is Complex Analysis?

In real analysis, one studies (rigorously) calculus in the setting of real num-
bers. Thus one studies concepts such as the convergence of real sequences,
continuity of real-valued functions, differentiation and integration. Based
on this, one might guess that in compler analysis, one studies similar con-
cepts in the setting of complex numbers. This is partly true, but it turns out
that up to the point of studying differentiation, there are no new features
in complex analysis as compared to the real analysis counterparts. But
the subject of complex analysis departs radically from real analysis when
one studies differentiation. Thus, complex analysis is not merely about
doing analysis in the setting of complex numbers, but rather, much more
specialized:

Complex analysis is the study of “complex differentiable” functions.

Recall that in real analysis, we say that a function f : R — R is differentiable
at o € R if there exists a real number L such that

lim fz) = flzo) _

r—To r — T

L,
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that is, for every € > 0, there is a § > 0 such that whenever 0 < |z — x| < 9,
there holds that

T —xo

— L| <e.

In other words, given any distance €, we can make the difference quotient
f(x) — f(zo)
xTr — Iy
lie within a distance of € from the real number L for all z sufficiently close

to, but distinct from, zg.
In the same way, we say that a function f : C — C is complex differen-
tiable at zy € C if there exists a complex number L such that

o [ = 10) _

z—rz0 Z— 20

3

that is, for every € > 0, there is a 6 > 0 such that whenever 0 < |z — zg| < 4,
there holds that

)—L < €.

The only change from the previous definition is that now the distances are
measured with the complez absolute value, and so this is a straightforward
looking generalization.

But we will see that this innocent looking generalization is actually
quite deep, and the class of complex differentiable functions looks radically
different from real differentiable functions. Here is an instance of this.

z? ifx >0,
—22 ifz <.

/f s
/ 0 0

Fig. 0.1 Graphs of the functions f and its derivative f’.

Example 0.1. Let f : R — R be given by f(z) = {
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Then f is differentiable everywhere, and
2¢ if x >0,
7@ ={ -

—2z if z < 0. (0.1)

Indeed, the above expressions for f’(z) are immediate when = # 0, and
f'(0) = 0 can be seen as follows. For z # 0,

[@)— 1) | _|i@
= -

T

I

and so given € > 0, we can take § = e (> 0) and then we have that whenever
0<|z—0| <o,

‘f(w)—f(o)

po —0‘:|£L'—0|<6:€.

However, it can be shown that f’ is not differentiable at 0; see Exercise 0.1.
This is visually obvious since f’ has a corner at z = 0.

Summarizing, we gave an example of an f : R — R, which is differ-
entiable everywhere in R, but whose derivative f’ is not differentiable on
R.

In contrast, we will later learn that if F': C — C is a complex differen-
tiable function in C, then it is infinitely many times complex differentiable!
In particular, its complex derivative F' is also complex differentiable in C.
Clearly this is an unexpected result if all we are used to is real analysis. We
will later learn that the reason this miracle takes place in complex analysis
is that complex differentiability imposes some “rigidity” on the function
which enables this phenomenon to occur. We will also see that this rigid-
ity is a consequence of the special geometric meaning of multiplication of
complex numbers. ¢

Exercise 0.1. Prove that f’ : R — R given by (0.1) is not differentiable at 0.

Why study complex analysis?

Although it might seem that complex analysis is just an exotic generaliza-
tion of real analysis, this is not so. Complex analysis is fundamental in all
of mathematics. In fact real analysis is actually inseparable with complex
analysis, as we shall see, and complex analysis plays an important role in
the applied sciences as well. Here is a list of a few reasons to study complex
analysis:
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PDEs. If f : C — C is a complex differentiable function in C, then we
have two associated real-valued functions u,v : R?> — R, namely the
real and imaginary parts of f: for (z,y) € R?, u(z,y) := Re(f(z,y))
and v(z,y) = Im(f(z,y)).

f ’U(.’L‘,y)--—?

Fig. 0.2 The real and imaginary parts u,v of f.

It turns out that real and imaginary parts u,v satisfy an important
basic PDE, called the Laplace equation:
Pu O
922 T o2
Similarly Av = 0 in R? as well. The Laplace equation itself is important
because many problems in applications, for example, in physics, give
rise to this equation. It occurs for instance in electrostatics, steady-
state heat conduction, incompressible fluid flow, Brownian motion, ete.
Real analysis. Using complex analysis, we can calculate some inte-
grals in real analysis, for example

/ 5T & or / cos(z?)dz.

—00 1+ x? 0
Note that the problem is set in the reals, but one can solve it using
complex analysis.
Moreover, sometimes complex analysis helps to clarify some matters
in real analysis. Here is an example of this. Consider

Au = 0.

Flz) = ﬁ z e R\ {-1,1}.

Then f has a “singularity” at & = 41, by which we mean that it is
not defined there. It is, however defined in particular in the interval
(—=1,1). The geometric series

1422 +24+25+...
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converges for |z?| < 1, or equivalently for |z| < 1, and we have
1
1422+t +ab 4. = 2= f(z) for z € (—1,1).
From the formula for f, it is not a surprise that the power series rep-
resentation of the function f is valid only for z € (—1, 1), since f itself
has singularities at x = 1 and at = —1. But now let us consider the
new function g given by

The geometric series 1 — 22 + 2% — 2% + — ... converges for | — 22| < 1,
or equivalently for |z| < 1, and we have

1-2? 4+t —a2f+—--. = g(z) for z € (—1,1).

T 1+a2
So the power series representation of the function g is again valid only
for z € (—1,1), despite there being no obvious reason from the formula
for g for the series to break down at the points z = —1 and z = +1.
The mystery will be resolved later on in this book, and we need to look
at the complex functions
1
1+ 22

(whose restriction to R are the functions f and g, respectively). In
particular, G now has singularities at z = 44, and we will see that
what matters for the power series expansion to be valid is the biggest
size of the disk we can consider with center at z = 0 which does not
contain any singularity of G.

and G(z) =

1
F(z2) = T2

Fig. 0.3 Singularities of F and G.
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Applications. Many tools used for solving problems in applications,
such as the Fourier/Laplace/z-transform, rely on complex function the-
ory. These tools in turn are useful for example to solve differential
equations which arise from applications. Complex analysis plays an
important in applied subjects such as mathematical physics and engi-
neering, for example in control theory, signal processing and so on.
Analytic number theory. Perhaps surprisingly, many questions
about the natural numbers can be answered using complex analytic
tools. For example, consider the Prime Number Theorem, which gives
an asymptotic estimate on the number 7(n) of primes less than n for
large n:
. . m(n)
Theorem 0.1. (Prime Number Theorem) lim ———— =1
nise0 1/ (log )

It turns out that one can give a proof of the Prime Number Theorem
using complex analytic computations with a certain complex differ-
entiable function called the Riemann zeta function. Associated with
the Riemann zeta function is also a famous unsolved problem in an-
alystic number theory, namely the Riemann Hypothesis, saying that
all the “nontrivial” zeros of the Riemann zeta function lie on the line
Re(s) = 1 in the complex plane. We will meet the Riemann zeta func-

2
tion in Exercise 4.5 later on.

What will we learn in Complex Analysis

The central object of study in this course will be

|holomorphic functions in a domain

that is, complex differentiable functions f : D — C, where D is a “do-
main” (the precise meaning of what we mean by a domain will be given in
Subsection 1.3.4).

The bulk of the book is then in Chapters 2, 3 and 4, where we construct

the following three lanterns to shed light on our central object of study,
namely holomorphic functions in a domain:

(1)
(2)
3)

The Cauchy-Riemann equations,
The Cauchy Integral Theorem,
Taylor series.
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7/ Holomorphic O

functions

in a domain £

The core content of the book can be summarized in the following Main
Theorem?:

Theorem 0.2. Let D be an open path connected set and let f : D — C.
Then the following are equivalent:

(1) For all z € D, f'(z) exists.

(2) Forall z € D and all n >0, f("™(z) exists.

(3) u := Re(f), v :=Im(f) are continuously differentiable and
ou v

—— = —— i I
dy ox

(4) For each simply connected subdomain S of D, there exists a holomor-
phic F : S — C such that F'(z) = f(z) for all z € S.

(5) f is continuous on D and for all piecewise smooth closed paths 7y in

each simply connected subdomain of D, we have

[yf(z)dz =0.

(6) If {z € C: |z — 20| < r} C D, then there is a unique sequence (Cn)n>0
in C such that for all z with |z — 20| <,

@_av

or Oy’

f(z) = Z en(z — 20)™.
n=0

(n)
d¢ and cn = f—@
n!t

1 f(©)

Furthermore, ¢, = — _
" 2mi [¢—zo|=T (C - Zo)n+1

IDon’t worry about the unfamiliar terms/notation here: that is what we will learn,
besides the proof!
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Complex Analysis is not complex analysis!

Indeed, it is not very complicated, and there isn’t much analysis. The
analysis is “softer” than real analysis: there are fewer deltas and epsilons
and difficult estimates, once a few key properties of complex differentiable
functions are established. The Main Theorem above tells us that the subject
is radically different from Real Analysis. Indeed, we have seen that a real-
valued differentiable function on an open interval (a,b) need not have a
continuous derivative. In contrast, a complex differentiable function on
an open subset of C is infinitely many times differentiable! This happens
because the special geometric meaning of complex multiplication implies
that complex differentiable functions behave in a rather controlled manner
locally infinitesimally, and aren’t allowed to map points willy nilly. This
controlled behaviour makes these functions rigid and we will see this in
Section 2.3. Nevertheless there are enough of them to make the subject
nontrivial and interesting!

The intended audience

These notes constitute a basic course in Complex Analysis, for students
who have studied calculus in one and in several variables. The title of
the book is meant to indicate that we aim to cover the bare bones of the
subject with minimal prerequisites. The notes originated as lecture notes
when the second author gave this course for third year students of the BSc
programme in Mathematics and/with Economics.
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