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Preface

This book has two major objectives. One is to provide an advanced
textbook in the field of lipid and membrane biochemistry. The second
is to provide a clear summary of the field for scientists engaged in
research in the area of lipids and membranes and related fields.

Biochemistry has matured to the point that advanced textbooks in
the various subcategories are required. This book should satisfy that
need for the field of lipid and membrane biochemistry. The chapters
are written for students who have taken an introductory course in
biochemistry. We assume the students are familiar with the basic
principles and concepts of biochemistry and have a general back-
ground in lipid and membrane biochemistry.

The second objective relates to the need for a general reference and
review book for scientists in the lipid and membrane field. Such a
book does not presently exist. Certainly there are many excellent
reviews available of the various topics covered by this book, and
these reviews are cited in the appropriate chapters. The availability of
a current, readable, and critical summary of the biochemistry of lipids
and membranes should fill an important gap in scientists’ libraries.
The literature in the field is vast, and there are usually many
constraints on researchers’ time. This book should allow these
scientists to become more familiar with other areas of lipid metabo-
lism related to their research interests. Finally, this book should help
clinical researchers keep abreast of developments in basic science that
are important for subsequent clinical advances.

The first chapter was written by Konrad Bloch, who for 50 years
has made very important contributions to the lipid and membrane
field. His chapter differs from the other chapters in that he summa-
rizes the advances of his major research topics during the past 10



xiv Preface

years—the evolutionary and structural functions of cholesterol in
membranes. It is a lively and thought-provoking contribution.

The second chapter, Physical Properties and Functional Roles of
Lipids in Membranes, introduces advanced information on mem-
brane lipids. A major theme of the chapter reminds us that membrane
lipids do more than separate aqueous compartments in cells. The
following chapters provide current information on the biochemistry
of fatty acids, phospholipids, triacylglycerols, sphingolipids, eicosa-
noids, cholesterol, and lipoproteins. The book concludes with two
chapters that summarize the rapidly developing areas of assembly of
lipids and proteins into membranes.

The book does not attempt to cover the general area of structure
and function of biological membranes, since that subject has already
been covered in a large number of excellent books. Second, the
addition of such material would greatly increase the length, and
therefore the cost, of this book.

The naming of lipids and enzymes in the book generally adheres to
the rules of IUPAC-IUB. For further information on the nomenclature
of lipids, please see Biochemical Journal 171 (1978): 21-35. A new
edition of Enzyme Nomenclature has recently been published by
Academic Press.

The editors and contributors assume full responsibility for the
content of the various chapters. We would be pleased to receive
comments and suggestions about this book.

Finally, the editors and contributors are indebted to the many
other people who have made this book possible. In particular, we
extend our thanks to Judith Smith, Teresa Vollmer, Theresa Fillwoch,
Tommyz Campbell, Dawn Oare, Patricia Knight, and Perry d’Obre-
nan. We also thank the following colleagues who have read parts of
the book and made useful suggestions: Dave Severson, Subhash
Basu, Carlos Hirschberg, Matt Spence, and Giinter Blobel.

Dennis and Jean Vance
Vancouver, Canada
July 1984
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CHAPTER 1

Cholesterol: Evolution of
Structure and Function

NATURAL
OCCURRENCE
OF STEROLS

Konrad Bloch

Biochemical unity has been a dominant concept for several decades.
Nucleic acids, proteins, carbohydrates, and phospholipids of the
same general structure are shared by all forms of life. The genetic
code is universal. Darwinian evolution, the common descent of
organisms, is manifest at the chemical level. Superimposed on unity,
biochemical diversity is phenotypically expressed, at least in part, by
organic molecules that are not ubiquitous: they are found in or
needed by some cells but not others. Hormones, pigments, sterols,
and many other substances concerned with specialized function
belong to this category. Cholesterol and the structurally related
sterols of fungi and plants are, as far as we know, not universal. We
can therefore state with certainty that the sterol structure is not
essential for the life process per se. In a more speculative vein, we can
say that sterols arrived late in the evolution of organisms. The
appearance of oxygen in the biosphere was essential for the biosyn-
thetic pathway of sterols to develop.

Sterols are common in eucaryotic cells but rare in procaryotes.
Vertebrates without exception synthesize cholesterol; in no instance
is the pathway deleted or incomplete. Most invertebrates, lacking the
enzymatic machinery for sterol synthesis, rely on an outside sterol
supply. This generalization, valid until recently, may need to be
qualified. Drosophila cell lines appear to be viable and exist without
measurable endogenous or exogenous sterol (Silberkang et al. 1983).
Yeasts and fungi, again with some apparent exceptions, harbor
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METABOLIC

AND PRECURSOR
FUNCTIONS OF THE
STEROL MOLECULE

side-chain-alkylated sterols. While in photosynthetic organisms sito-
sterol and stigmasterol (see Figure 1.2 for structure) are the most
abundant and widely distributed sterols, cholesterol and ergosterol
are by no means absent. The classical distinction between animal and
plant sterols no longer corresponds to reality.

The occasional presence of sterols in procaryotes is of unknown
functional significance. Substantial sterol synthesis (4-methyl sterols)
is known with certainty to occur in Methylococcus capsulatus, an
aerobic methanotroph (Bird et al. 1971). In another well-documented
case, the isolation of A®-cholestenol from a myxobacterium has
recently been reported (Kohl, Gloe, and Reichenbach 1983). Claims
for the presence of sterol traces in other procaryotes need to be
substantiated. At any rate, for the vast majority of bacteria and
blue-green algae, sterol is not a required molecule. Notable and
special cases are the grossly heterotrophic sterol-requiring Myco-
plasma species, which normally parasitize animal or plant tissues
(Edward and Fitzgerald 1951). In a few instances squalene-derived
molecules other than those containing the typical tetracyclic steriod
nucleus appear to be functionally equivalent to sterol, for example,
pentacyclic triterpenes (see the following discussion).

Perhaps not surprisingly, the more advanced the organism, the more
diverse the role of the sterol molecule. That cholesterol is the essential
precursor for bile acids, corticoids, sex hormones, and vitamin
D-derived hormones is well established for all vertebrates. These
transformations (Figure 1.1) involve partial shortening or complete
elimination of the isooctyl side chain as well as a wide variety of ring
hydroxylations. Oxygen is an essential reagent for both side-chain
and nuclear modifications catalyzed by highly specific mixed-function
oxygenases, which often, but not invariably, involve cytochrome
Pysp. It is important to note that in all these transformations but one
(vitamin D) the Cyq carbocyclic ring system remains intact. Changes of
the ring conformation from all trans (planar) to A/B cis occur only in
the formation of ecdysone, an insect hormone, and in bile acid
formation. The position of oxygen functions and the length of the
truncated side chain determine hormone specificity.

In invertebrates, with their primitive endocrine system, trans-
formations of diet-derived sterol are apparently restricted to hydrox-
ylations and transformation from A/B trans to cis of the otherwise
intact Cp; sterol structure (ecdysone, see Figure 1.1). Side-chain
shortening does not seem to occur. However, as an interesting
example of environmental adaptation, certain insects have evolved a
mechanism for converting nonanimal sterols to nutritionally compe-
tent cholesterol derivatives by removing C-24 alkyl groups from the



Metabolic and Precursor Functions of the Sterol Molecule 3

Antheridiol

w0

HO

Bile Acids /

OH CH20S03 —> Cardenolides
' CH,0H
27
Ho " T TTOH Gy
a- Ecdysone
a - Cyprinol
(Coelacanth) \
-Vi
J;? ﬁ D-Vitamins

OH COH
1 Progesterone
C24 Az OH \
HO” ~OH 0
OH ]
Cholic Acid (ISjj
‘L (u) 0 Ca o” Cio
NH
| Cortisol Androstenedione
(CH3)2 SOzH l

Taurocholic Acid ;I f
Figure 1.1. Functional "o Ce

evolution of the sterol
molecule. Estradiol

side chain. Thus the omnivorous cockroach dealkylates ergosterol or
Cyy plant sterols to 22-dehydrocholesterol, while Dermestes vulpinus,
an obligate carnivore, lacks—because it does not need —the requisite
dealkylating enzymes (Clark and Bloch 1959).

An extensive examination of marine invertebrates (sponges, gorgo-
nians) has uncovered a bewildering variety of side-chain-modified
sterols. Structures bearing additional alkyl or cyclopropane groups at
six of the eight isooctyl sterol side-chain positions have been iden-
tified (Djerassi et al. 1979). It has been suggested, and to some extent
documented, that the phospholipids of such marine organisms
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STEROL PATTERNS

contain unique structural features complementary to the side-chain-
alkylated sterols.

In lieu of the mammalian bile acids of the cholic acid type, some
crustaceans and perhaps also other invertebrates, elaborate aliphatic
aminosulfonates as intestinal emulsifiers, presumably for aiding
triacylglycerol absorption (van den Oord, Danielsson, and Ryhage
1965).

Metabolites of ergosterol, the prototypical sterol of yeast and fungi,
have not been found or adequately characterized. We may conclude
that in unicellular eucaryotes only unmodified sterol molecules play
an essential or beneficial role.

The C,4 side-chain-alkylated plant sterols sitosterol and stigmas-
terol do not appear to undergo functionally essential conversions
involving the loss of ring skeletal carbon atoms. Surprisingly, how-
ever, numerous plant families produce ecdysone, either identical with
the cholesterol-derived invertebrate molting hormones or variants
thereof, in quantities exceeding those found in insects by up to five
orders of magnitude or more. Plant-feeding insects therefore have
the choice of deriving these hormones directly from their diet or by
converting the sterols they ingest. The cardioactive digitalis glyco-
sides (cardenolides and bufalins) formed from sterols in Digitalis
and Strophanthus species are probably secondary metabolites, whose
physiological function in the organism of origin is unknown.

Physiologically useful modifications of the sterol structure have not
been described in the few bacterial sterol producers or sterol auxo-
trophs. Information on the role of sterols in procaryotes exists only
for the wall-less mycoplasmas (see the following discussion).

In some animal tissues (liver and brain) cholesterol comprises more
than 95% of the sterol fraction. Cholesterol precursors (lanosterol and
partially dealkylated lanosterol derivatives) account for the remain-
der. In some cells, for example, lymphocytes, the concentration of
these intermediates may be substantial (Burns et al. 1982). Sterol
absorption from the mammalian gastrointestinal tract appears to be
specific for cholesterol and its precursors, regardless of diet. Fungal
and plant sterols are effectively excluded except in rare hereditary
disorders. This remarkable discrimination, which accounts for the
homogeneity of tissue sterols, appears to be especially pronounced
for the absorption process mediated by the brush border membranes.
However, animal cells in culture, for instance, Chinese hamster ovary
cells, readily take up plant sterols from the medium and may indeed
metabolize them. By contrast marine invertebrates, whether or not
they are sterol auxotrophs, appear to discriminate much less against
dietary sterols, with the result that their tissue sterol compositions
show varying degrees of complexity.
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Bewildering sterol mixtures are found in most lower and higher
plants. While the Cy4-ethyl sterols predominate, especially in plant
leaves, sterols conventionally regarded as either typical for animals
(cholesterol) or yeasts and fungi (ergosterol) (see Figure 1.2 for
structure) are often present in substantial amounts. Especially strik-
ing is the fact that about a dozen species of red algae contain
cholesterol exclusively. The argument made for invertebrates that the
complexity of the sterol mixtures is attributable to indiscriminate
absorption is not likely to hold in the case of plants. Since side-chain-
alkylated sterols exhibit membrane properties quite different from
those shown by cholesterol, the possibility that plants produce sterols
for diverse functions deserves to be explored.

The amounts of sterol found in various animal tissues greatly
exceed their bodily needs for the production of bile acids, steroid
hormones, and vitamin D, probably by several orders of magnitude.
According to conventional wisdom, the bulk of the tissue sterol is a



