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Preface
Infinitesimals then and now

The first calculus textbook, Analyse des Infiniment Petits by the Mar-
quis de L'Hopital, was published in 1696. As the title indicates, the pre-
sentation was based on “infinitely small” or “infinitesimal” quantities,
introduced by Gottfried Wilhelm von Leibniz, one of the co-discoverers
of calculus. For one hundred and fifty years Leibniz’s method of infinites-
imals served as the standard way of doing calculus, in preference to Isaac
Newton’s method of fluxes. It reached high sophistication in the hands
of masters such as the Bernoulli brothers and Leonhard Euler. From its
inception it was also criticized for the lack of firm foundations (as was
Newton's method). Bishop Berkeley [2] famously pointed out the logical
discrepancies that appear when dividing by nonzero quantities on the
one hand, but then ignoring them in the results as though they were
“ghosts of departed quantities” on the other hand.

The work of nineteenth century mathematicians, in particular of
Augustin-Louis Cauchy and Karl Weierstrass, succeeded in giving a rig-
orous treatment of Newton’s approach, culminating in the concept of
limit defined by the now classical epsilon—delta method. As a result,
infinitesimals disappeared from modern mathematical texts. The rigor-
ous foundations provided by the epsilon—delta method enabled an un-
precedented flowering of mathematical analysis. Nevertheless, physical
scientists have been reluctant to give up on the simplicity and intuitive
appeal of infinitesimals, which still persist in some form in contemporary
scientific thinking.

A rigorous theory of infinitesimals consistent with the contempo-
rary understanding of mathematical analysis was established in 1960 by
Abraham Robinson. His book Nonstandard Analysis [24] provided para-
phrases of many classical arguments, as well as numerous new results.
At the research level, Robinson’s methods have found significant applica-
tions in analysis, number theory, mathematical physics and other areas
of pure and applied mathematics. The underlying framework of non-
standard analysis is model-theoretic, usually based on ultraproducts or
superstructures, concepts unsuitable for elementary level exposition; see
Goldblatt [4] or Vakil [28] for an excellent graduate level introduction
to nonstandard analysis. Even at the research level, the need to invoke
model theory is a bothersome distraction from the essential ideas.

In mathematical education the abandonment of infinitesimals had
perhaps the greatest impact. The epsilon-delta definition of limit and
the proofs based on this definition are just too complicated for an average
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student to master quickly. if ever. As a result, rigor has disappeared from
many modern introductory calculus courses. They are usually taught in
a way that leaves the basic concepts undefined and the fundamental
theorems unproved. This “faith-based” approach runs counter to the
conception of mathematics as a rigorous deductive science that one tries
to convey to students in high school algebra and geometry. Many teachers
(and some students) are justifiably bothered by this state of affairs.

Some attempts to teach elementary calculus using nonstandard anal-
ysis have been made; two nice calculus textbooks in this vein are
Keisler [16] and Stroyan [27]. The model-theoretic prerequisites have
been circumvented by an axiomatic treatment of an extension of the
real number field called the hyperreals. Yet it seems fair to say that
these attempts have not been as successful as the intuitive simplicity
of the concept of infinitesimal would lead one to expect. The third au-
thor tried to teach elementary calculus using Keisler’s book [16]; this
experience and the pedagogical difficulties it uncovered are described in
[17]. Besides the need to learn a new non-Archimedean number system
while students still struggle to adequately understand the real numbers,
there is the need to distinguish between internal and external objects
and the potential of the latter to provide distracting, pathological exam-
ples. There is also the fact that the infinitesimal definitions of the basic
concepts of calculus (derivative, limit, integral) apply only to standard
objects. The epsilon—delta definition is still needed to make sense of, say,
f'(x) when either z or f is not standard.

Axiomatic nonstandard set theories have been proposed as a way to
make nonstandard methods more accessible. Such theories were intro-
duced in the mid-1970s independently by the first author [7, 8], Edward
Nelson [18] and Petr Vopénka [29]; we refer the interested reader to
Kanovei and Reeken’s comprehensive monograph [14]. Nelson’s theory
IST has found a significant following; see Robert [23] for a nice exposi-
tion. The axiomatic framework alleviates some of the pedagogical diffi-
culties of the model-theoretic approach. In the simpler theories, like IST
or its bounded variant BST, there are no external objects and no hy-
perreals. However, all these axiomatic approaches still have a significant
“overhead” of logical formalism. Also, the fixed division of mathemati-
cal entities into “standard” and “internal” postulated by these theories
means that the last difficulty mentioned above, to wit, that the infinites-
imal definitions of the calculus concepts apply only to standard objects,
remains in full force (see [19] and [10] for a fuller discussion of this point).

Following an idea of Guy Wallet, Yves Péraire in a series of papers
beginning in 1989 ([21] is the most fundamental) developed an axiomatic
nonstandard set theory RIST, where the notion of “standard” (and, con-
sequently, also of “infinitesimal”) is relative; every mathematical entity
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can be regarded as “standard” when viewed in the context of its own
appropriate universe. The first author in [9] and [11] strengthened the
axioms of Péraire’s theory (axiomatic set theories FRIST and GRIST)
and simplified its formalism.

About this book

The theory on which this book is based is a fragment of the bounded ver-
sion of RIST (RBST; see the Appendix). It is a result of a long series
of simplifications and modifications influenced by classroom experience
over a period of ten years. Since the word “standard” in common usage,
and even in nonstandard analysis, has an absolute connotation: “usual,
ordinary, traditional, prevailing,” we use “observable” for the relativized
version of the concept. Every mathematical object can be regarded as
observable relative to a suitable context. The fundamental Principle of
Stability asserts, roughly speaking, that objects have exactly the same
properties relative to any context where they are observable. In particu-
lar, relative to any context there are infinitesimal and infinitely large real
numbers (we call them wultrasmall and ultralarge numbers, respectively,
for reasons explained in the Introduction).

A major advantage of the relative approach is that the infinitesimal
definitions (of derivative, limit and so on) apply uniformly to all functions
and all of their arguments; thus there is no need for the epsilon—delta
mechanism. One can completely eliminate it from elementary calculus if
one so desires.

An important feature of our approach is the contextual notation: no-
tions that depend on the context, such as “observable,” “ultrasmall” and
“ultralarge,” are understood to be relative to the context of the theorem,
definition or proof in which they are mentioned (unless explicitly stated
otherwise). In conjunction with the Stability Principle, this convention
minimizes the need to pay explicit attention to the context and greatly
simplifies the presentation. The presentation is axiomatic, based on six
principles. The Existence Principle and the Relative Observability Prin-
ciple set up the basic structure of observability. The Closure Principle
asserts, in effect, that objects definable from observable parameters are
observable, and the Observable Neighbor Principle asserts that every real
number that is not ultralarge has to be ultraclose to some observable real
number. The last two important principles, Stability and Definition, are
rarely appealed to explicitly; they provide the background justification
for the contextual convention.

Of course, we do not expect students (or even trained mathemati-
cians) to prove theorems formally from the axioms. Some intuitive rep-
resentation of what the axioms are about is necessary. There are in fact



Xiv

two ways to view the axioms (of any nonstandard set theory) intuitively.
In the internal view, advocated by Nelson, the numbers and sets of the
theory are regarded as the usual sets and numbers we are all familiar
with. In this view, no new objects are added to the usual mathematical
universe; it is only the language that is being extended. The standard-
ness (or, observability) predicate is a linguistic device that singles out
some of the familiar objects for special attention. This idea is attractive
to those who can reconcile their view of natural numbers with the ex-
istence of properties that do not satisfy the Principle of Mathematical
Induction. Such properties can be expressed in the extended language:
for example, “x is standard” is such a property: 1 is standard; if n is
standard, then n + 1 is standard, but not all natural numbers are stan-
dard. We had originally presented the material in this book from the
internal point of view (see [13]). It works quite well in the classroom,
but it seems that most mathematicians find it incompatible with their
ideas about natural numbers.

The alternative is the “standard view” proposed in [7]. In this view,
which is adopted in this book, we identify the standard (observable in
every context) sets with the familiar sets of traditional mathematics.
But these sets are seen as also having a plethora of nonstandard, ideal
elements, such as the infinitesimal and infinitely large elements of the
set R. See Section 1.1 for more details.

Admittedly, this picture still represents a change from the traditional
view in which there are no infinitesimals in R, but we think that it
should be more easily acceptable. An important point is that the two
views differ only philosophically. They are concerned with the intuitive
interpretation; the actual mathematics is the same in either view.

The book develops the usual topics from calculus of one real variable.
The presentation is based on ultrasmall numbers. It demonstrates that
mathematics with ultrasmall numbers can be practiced in a style that
is just as informal and natural as the traditional treatments, but with
important advantages. Use of ultrasmall numbers is more intuitive and it
disposes with the epsilon—delta machinery and with the associated book-
keeping. The proofs become simpler and more focused on the “combi-
natorial” heart of arguments. Fundamental results, such as the Extreme
Value Theorem, can be fully proved from the axioms immediately, with-
out the need to master notions of supremum or compactness. As a result,
calculus can be presented as mathematics—with proofs—even at a stu-
dent level where vague arguments about “approaching” have become
the norm. Derivatives and definite integrals can be developed before
limits, and independently of each other. The relative framework allows
arguments involving two or more levels of observability simultaneously.
(This is a feature not easily available in the Robinsonian or Nelsonian



Xv

framework. It simplifies many proofs, especially where double limits are
involved.) A rigorous theory of ultrasmall and ultralarge numbers also
enables the construction of entirely new models of mathematical and
physical phenomena.

Intended audience

In this book, perhaps for the first time, definitions and arguments in-
volving infinitesimals are presented in a style that is both as informal
and as rigorous as is customary in standard textbooks of introductory
analysis. We eschew both the ultraproduct construction of the model-
theoretic nonstandard analysis and the excessive formalism of the ax-
iomatic approaches. This should make the book of interest to a wide
audience of mathematically minded readers—mathematicians, teachers
of mathematics at high school or college level, scientists and philosophers
of mathematics—anybody looking for a simple but rigorous introduction
to infinitesimal methods. Although some preliminary acquaintance with
calculus would be helpful, the actual prerequisites do not go beyond high
school algebra, geometry and trigonometry, making the book, especially
Part I, accessible as an independent reading to ambitious beginning cal-
culus students.

This is also the first time that an exposition of the relative framework
for nonstandard analysis (allowing many levels of standardness) is given
in a book format; until now, it has been available only in research pa-
pers. Thus perhaps even experts on nonstandard analysis will find here
something of interest.

Our hope for the most significant impact of the book is in the teaching
of introductory calculus at the high school or college level. We started
this project in response to the high school syllabus of the canton of
Geneva (Switzerland), where two of us teach, and which requires courses
in calculus (as well as other mathematical subjects) to be taught in the
standard mathematical fashion: definition, example, theorem and proof
with a reasonable degree of rigor. This turned out to be impossible to do
with the traditional epsilon—-delta method. Our approach was developed
explicitly to satisfy this requirement. It has been used in two Geneva high
schools for the last ten years by up to as many teachers, and repeatedly
and extensively modified in response to the classroom experience. It has
been successful in remedying the situation: It provides simpler definitions
for the basic concepts, allowing students to form a good intuition and
actually prove things by themselves. Moreover, this approach does not
require any additional “black boxes™ once the initial axioms have been
presented. Many theorems can be proved simply, without resorting to
difficult concepts like compactness or completeness. The track record
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of former students is very encouraging. Those of our students who had
to take a course in analysis during their first year at the university all
passed the exam. They report no particular difficulties with switching to
the standard epsilon-delta method at the university level, having had to
work rigorously in analysis before. This contrasts with students exposed
to the informal standard method, who encounter rigor in analysis for
the first time at the university level. A report on an earlier stage of this
project has been published in [20].

For teachers of mathematics who wish to present calculus at an in-
troductory college level, or even high school, with at least some proofs,
the text can serve as a reference and a sourcebook of ideas for such a
course. This should be of particular interest in countries where proofs
are part of the syllabus from the onset, such as Switzerland, France and
others. At the introductory level one would aim to cover only some of
the material in Part I. In particular, the technical aspects of the Clo-
sure and Stability Principles in Chapter 1 can be de-emphasized and/or
introduced gradually, as needed in the subsequent chapters. A student
handout that illustrates how the ideas from the book can be used at an
elementary level is available on the website www.ultrasmall.org.

The format of our book differs from textbooks for traditional Cale 101
courses mainly in that we clearly have to start by convincing the teach-
ers of such courses that ours is a worthwhile approach. They first have
to master the techniques themselves, and for this purpose we wrote the
book at a slightly higher level, including explanations and material be-
yond what would be presented to the beginning students. The book is
intended to inspire teachers to supplement the usual Cale 101 and 102
material or to fashion their own courses on its basis.

The book is structured so that it could be used as a textbook for a
course at a more advanced level, comparable to the (U.S.) first advanced
calculus course. In this case, one would probably want to cover most of
Parts I and II. This would be especially appropriate for courses directed
towards physics or engineering majors, as arguments involving infinites-
imals are common in the practice of those fields. We think that there
are advantages to teaching with ultrasmall numbers even in a course ori-
ented towards mathematics majors. It seems that many students, even
at this level, find it difficult to understand, say, the distinction between
pointwise and uniform convergence of a sequence of functions, based on
the epsilon—delta definitions of these concepts: an initial approach via
infinitesimals might be more intuitive. We recognize that students in a
course of this nature have to learn the traditional epsilon—delta meth-
ods, and this book makes it possible to get used to them gradually, while
maintaining full rigor from the start. The transition to traditional meth-
ods is motivated in Section 4.7 (on numerical integration), Chapter 10
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(topology of the real line), and explicitly worked out in Section 5.2. We
focus on those topics that best illustrate the variety of infinitesimal meth-
ods and de-emphasize those where algebraic or computational aspects
predominate. (Yet, for the sake of providing a complete course, we also
include some theorems whose proofs are not specific to our approach,
some routine computational examples and many exercises.) The book
could also serve as a text for a seminar or independent study with an
emphasis on nonstandard methods.

There are 80 numbered exercises scattered throughout the text. They
are an important part of the learning experience and the reader is en-
couraged to attempt all of them. In many cases, the results are used later
in the text. They all have worked out solutions starting on page 241. Ad-
ditional exercises (without answers) are placed at the end of each chapter
(170 in all), ranging from the routine to the more challenging.

Chapter-by-chapter summary

Part I includes material that—probably with omission of some of the
more difficult proofs—could be covered in an elementary calculus course.
In an advanced calculus course one would want to include all the proofs.
Chapter 1 provides some intuition about how to interpret the nontra-
ditional concept of observability on which our approach is based. It for-
mulates the basic principles that govern observability and defines the key
concepts: ultrasmall and ultralarge numbers and observable neighbors.
Chapter 2 studies continuity and limits. In particular, simple proofs
of the Intermediate Value Theorem and the Extreme Value Theorem
are given; they do not rely on the notion of supremum or topological
properties such as compactness. Uniform continuity is also introduced,
and the theory of exponentiation with real exponents is developed.
Chapter 3 develops elementary differential calculus and Chapter 4, in-
tegration of continuous functions. All relevant theorems are fully proved.
Part II contains material that would not usually be found in a first
calculus course, but that should be included in advanced calculus.
Sections 5.1 and 5.2 in Chapter 5 discuss the notion of supremum,
completeness of the real numbers, mathematical induction, and the
epsilon—delta method. With the exception of induction, this material
is almost never used in the rest of the book and can be omitted or post-
poned. Section 5.3 establishes a useful equivalent version of the definition
of limit.
Chapter 6 proves various versions of L'Hopital's Rule, introduces
higher derivatives, and defines the Taylor polynomial.
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Chapter 7 develops the usual material on sequences and series in our
framework. Uniform convergence of sequences of functions is studied in
Section 7.4.

The last three chapters of Part II are independent of each other.
Chapter 8 begins with some elementary material on differential equa-
tions, and then follows with a nonstandard proof of the Peano theorem
about the existence of solutions of first order differential equations. The
proof of the uniqueness theorem assuming the Lipschitz condition is also
given. Chapter 9 develops the theory of the Riemann integral. Chapter 10
illustrates the nonstandard treatment of topological concepts, such as
open, closed, dense and compact sets, in the simple setting of sets of real
numbers.

The Appendix, intended for mathematically more sophisticated read-
ers, gives a formal outline of the foundations on which our approach rests.
After a brief review of logical notation and the role of axioms and proofs,
we state formally the axioms of the nonstandard set theory RBST and
deduce from them the principles used in the text. We then discuss con-
sistency of RBST and its extensions and provide a guide to the history
and literature of the subject.
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Preface for Students

Calculus was developed by Isaac Newton (1642-1727) and Gottfried Wil-
helm von Leibniz (1646-1716) in the last third of the seventeenth century
as a general method for the study of changing quantities (functions). It
has found extensive applications in every field of science concerned with
change: physics, chemistry, geology, ecology, economics; in engineering,
finance and many other areas. Newton and Leibniz discovered calculus
independently and approached it from different viewpoints. In order to
understand the difference, let us look at a simple example of an impor-
tant problem of calculus.

We consider a point-like object P moving in a straight line. The
position of P at time ¢ is determined by the distance s(t) of P from a
fixed origin O.

distance

time

S e

A fundamental assumption of mechanics is that the moving object
has, at each time t, a definite instantaneous velocity v(t), and one of
its basic problems is to determine this instantaneous velocity, assuming
that the distance function is known.

We begin by observing that the average velocity in an interval, say
from t to t + At where At > 0, can be obtained by a straightforward
algebraic computation.

If s(t) is the distance of the object from the origin at time ¢, s(t+ At)
is its distance from the origin at time ¢ + Atf, hence, during the time
interval from t to t + At the object has travelled the net distance As
equal to s(t + At) — s(t), with the average velocity

As  s(t+ At) — s(t)

At At ' (1)
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As an instant has no measurable duration, one might think that the
instantaneous velocity v(t) at time ¢ could be obtained from equation (1)
by setting At = 0. However, this idea does not work because the resulting
expression 0/0 is mathematically meaningless. It does not follow that
there is no way of obtaining v(t) from equation (1); however, to do so
we have to employ some reasoning, in addition to algebra.

Let us consider a specific example: a small ball in free fall. It has
been determined experimentally by Galileo Galilei (1564-1642) that the
distance of the falling ball from the point of release is s(t) = ct?, where
the constant ¢ has approximate numerical value 5 (if time is measured
in seconds and distance in meters). For an object moving according to
s(t) = 5t we have

As = 5(t + At)% — 5% = 10t(At) + 5(At)?
and the average velocity is

As  10t(At) + 5(At)? _

AL A7 = 10t + 5At. (2)
Can the instantaneous velocity at time ¢ be obtained from this formula?
Intuitively, the instantaneous velocity is approximated by the average
velocity when At is very small, and it has to depend only on the time ¢,
not on the arbitrary choice of At we use to compute the average velocity.
The expression on the right side of equation (2) is a sum of two terms:
the term 10t that depends only on ¢, and the term 5At that depends on
At; moreover, if At is very small, this second term is also very small.
We conclude that the first term 10t represents the instantaneous velocity
v(t) at time ¢, and the second term 5At¢ represents the difference between
v(t) and the average velocity in the interval [t.t + At]. The challenge is
to convert this reasoning into rigorous mathematics.




