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In January 2009, the first workshop on species tree estimation was held at the University
of Michigan. Because the merger of phylogenetic and population approaches is central to
methods for estimating species trees, the workshop was initiated to address the gap
between the population genetic principles on which these methods are based and the
backgrounds of those interested in applying these procedures (i.e., students interested in
phylogenetics are often not trained in population genetics). Building bridges and filling
this knowledge gap was a key goal of the workshop. Not only were the practicalities
of using software taught, but key concepts were also discussed in order to enable
researchers to make informed decisions as they delve into this exciting new area of
phylogenetic study.

The influx of multilocus data in phylogenetics is a primary driving force behind this
new development in molecular systematics—the direct estimation of species trees, as
opposed to relying on gene trees for phylogenetic inference. However, it is the inherent
appeal of these new approaches for species tree estimation that explains the tremendous
interests in their application and their analytical development. Specifically, with the
unprecedented access to molecular data and improvements in computational techniques,
there is no justification for ignoring an inescapable biological reality—gene trees differ
from one another for a variety of reasons. Moreover, an explicit accounting of this vari-
ance not only can usher in more accurate estimates of species relationships but also can
reveal the biological processes that have influenced the diversification history and shaped
organismal genomes.

In the book, we highlight, by example, how species tree estimation differs from
traditional phylogenetic estimation. This includes both conceptual and practical issues
related to improving species tree estimates. The first half of the book devotes six chapters
to methodological developments, whereas the last half of the book, also with six chapters,
focuses on empirical applications. The contributors were among the original participants
from the workshop. Through the collection of chapters (each of which represents the
authors’ own perspective on aspects of species tree estimation arising from their individual
research programs), a diversity of perspectives and backgrounds are presented. This diver-
sity means that the book speaks to people with varying levels of familiarity with the topic
of species tree estimation. However, it does not (nor is it intended to) provide a compre-
hensive overview of the subject. The combination of theoretical and empirical work is
meant to provide readers with a level of knowledge of both the advances and limitations
of this nascent area of phylogenetics in order to assist researchers in applying the methods,
while also inspiring future advances among those researchers with an interest in method-
ological development. Such cross talk (between empiricists and theoreticians) is vital to
the growth of the new area of molecular phylogenetics as it refocuses attention on the
biological history of diversification (i.e., the timing and pattern of species divergence),
including the processes generating the observed patterns of genetic variation (e.g., sorting
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of ancestral polymorphism and gene flow, in addition to mutation models of nucleotide
evolution). In this way, the book provides access to a molecular phylogenetic perspective
that, unlike the vast majority of phylogenetic methods that focus on the estimation of gene
trees, places the focus on the primary target of interest—the species tree.

L. Lacey Knowles
Laura S. Kubatko
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CHAPTER 1

ESTIMATING SPECIES TREES: AN
INTRODUCTION TO CONCEPTS

. Laura S. Kubatko

1.1 INTRODUCTION

The estimation of relationships among species in an evolutionary context broadly falls
within the purview of the discipline of systematics. However, as the central framework in
evolutionary (and some ecological) study, the enormous impact of this single endeavor—
phylogenetic estimation—is unquestionable. How, and whether, species relationships are
accurately inferred are, consequently, issues of broad and far-reaching concern.

The goal of this book is to provide an overview of several recently developed
methods for phylogenetic estimation that focus explicitly on the challenges and strengths
inherent in the analysis of multilocus data while giving practical guidelines on imple-
menting these approaches. Decreased sequencing costs and increased access to primer
sets enhance the relative ease of data collection, providing unprecedented amounts of
multilocus sequence for molecular phylogenetic analysis across all of biodiversity (e.g.,
Goldman and Yang 2008; Hughes et al. 2006; Wiens et al. 2008). Detailed suggestions
and discussion throughout the chapters focus on both conceptual and methodological
issues, addressing such topics as how results should be interpreted and how to recognize
the signs of a problem with an analysis. The combination of theoretical and empirical
studies contained herein serves to identify both the strengths and the limitations of these
new methods under not only idealized situations with simulated data but also with
empirical sequence data. The guidelines also serve to draw attention to the impact that
sampling design, marker choice, and taxon sampling will have on the performance of
the new methods.

1.1.1 Different Tree Types and
Their Relationship to Phylogeny

As a characterization of the history of species divergence (including both the pattern and
relative timing of lineage splitting), a phylogeny is a tree where both the topology and
branch lengths portray information about the evolutionary history of species (Fig. 1.1).
While molecular data predominate the pursuit of estimating the evolutionary history of
species, the trees estimated from DNA sequences are clearly distinct from, and are not

Estimating Species Trees: Practical and Theoretical Aspects, Edited by L. Lacey Knowles and
Laura S. Kubatko
Copyright © 2010 Wiley-Blackwell
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Figure 1.1 Species trees contain information on both the pattern (topology) and timing (branch
lengths) of species diversification. This phylogenetic history can be inferred from the gene trees
that are embedded within the species lineages, which may or may not be concordant with the
species tree (e.g., the deep coalescence of gene lineages marked with the red dots). By
incorporating a model of gene lineage coalescence (in addition to the models of nucleotide
substitution), the phylogenetic history of species (i.e., the species tree) can be estimated, despite
widespread incomplete lineage sorting (i.e., sequences from multiple individuals per species—
three individuals for this locus in this case—do not form monophyletic clades). (Illustration by
John Megahan.)

synonymous with, the underlying species history—the species tree (Maddison 1997
Slowinski and Page 1999). In contrast to the differing genealogical histories (i.e., gene
trees) that might characterize a locus (or a nonrecombining DNA fragment), there is only
one species history, whether that history is strictly bifurcating (i.e., a species tree) or
involves reticulations, which may or may not obscure species relationships.

The patterns of similarity and differences in the DNA sequences of organisms related
by descent from common ancestors implicitly contain information about species relation-
ships. That is, there is an intimate link between gene trees and the species tree in which
they are embedded. This link means that gene trees are informative about species phylog-
enies, yet it is clear that a gene tree should not be equated with a species phylogeny since
the evolutionary processes that determine the structure of gene trees differ from those
governing species trees. The structure of a species tree is determined by the process of
speciation, extinction, and in some cases, hybridization, whereas the gene tree structure
reflects not only the proliferation and loss of species lineages but also the population
genetic process of mutation and gene lineage coalescence within species lineages, and in
some cases, the locus-specific effects of migration between species lineages.
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Enormous attention has been dedicated to understanding the theoretical and compu-
tational challenges associated with estimating gene trees from molecular data, as well as
the practical complications that arise with empirical investigations. For example, in addi-
tion to the development of very sophisticated methods for estimating a gene tree from
DNA sequences (e.g., accommodating complex models of nucleotide evolution and evalu-
ating the full probability of the data for a set of tree topologies and branch lengths;
reviewed in Felsenstein 2004), the impact of various data properties on tree accuracy is
also well studied (e.g., the number of base pairs analyzed and taxon sampling; Flynn
et al. 2005; Graybeal 1998; Rannala et al. 1998; Rosenberg and Kumar 2001; Wiens 2003;
Zwiki and Hillis 2002). In contrast, we are only beginning to understand the theoretical
and computational challenges, as well as the practical complications of empirical data,
when the target is to obtain an estimate of the species tree. For example, multiple processes
may determine the relationship between species and their contained loci (e.g., gene lineage
coalescence alone or in combination with gene flow). Moreover, the collection of possible
bifurcating trees (i.e., the tree space) becomes enormous even for a moderate number
of species. For example, even if only bifurcating processes are considered, and ignoring
differences in branch lengths, there are approximately 2 x 10° trees for 10taxa. The
difficulties posed by such issues, as well as strategies for contending with these challenges,
are discussed in the following sections that trace the steps from species tree estimation
back to the collection of DNA sequence data.

While much of the research on obtaining direct estimates of species trees has been
driven by computational developments, these methodological changes do not represent the
inception of new core phylogenetic concepts. The recent advances (paradoxically) provide
a practical means of returning to the systematic tradition of estimating species relationship.
Thus, in spite of the fact that estimating species trees involves a fundamental shift in
how molecular data are used and interpreted, the target is still the phylogeny. Estimation
of a species tree, in addition to putting the focus on the object of systematic interest,
also provides a framework for studying the processes generating a set of contained gene
trees because of the explicit distinction between the species tree and gene trees. For
example, the discord among gene trees may be biologically meaningful (as opposed to
being due to tree-building errors, for example; Jeffroy et al. 2006). The different gene
trees may provide insights about the diversification process (e.g., the population size
of the taxa relative to the divergence time separating speciation events, or the extent of
gene flow among taxa), or whether species trees are meaningful if there is significant
horizontal gene transfer, a question that requires empirical evaluation (e.g., Galtier and
Daubin 2008).

1.2 THE RELATIONSHIP BETWEEN
GENE TREES AND SPECIES TREES

Gene trees and species trees are different from one another for a variety of reasons. The
most important of these is the possibility that evolutionary processes such as horizontal
gene transfer, hybridization, gene duplication, or incomplete lineage sorting lead to
differences in the underlying histories of each gene for a given species phylogeny.
Understanding these evolutionary processes and their effect on the relationship between
gene trees and species trees is thus a problem of central importance to the development
of methods for estimating species phylogenies: the goal is estimation of species trees; the
data available to do this come in the form of DNA sequences arising from the histories
of individual genes. We must therefore strive to understand and effectively model the



4

CHAPTER 1 ESTIMATING SPECIES TREES: AN INTRODUCTION TO CONCEPTS AND MODELS

process by which sequence data arise on the individual gene trees, conditional on the
overall species-level relationships.

The methods described and illustrated in this book incorporate one or more of the
evolutionary processes mentioned above, and many of these models are common to several
of the subsequent chapters on species tree estimation. For this reason, we will devote the
next few sections to giving a relatively broad overview of the common models used to relate
gene trees to species trees, with ample references to which the reader is directed to obtain
a more detailed explanation. Section 1.2.1 defines the processes of horizontal gene transfer,
gene duplication, hybridization, and incomplete lineage sorting, and briefly describes their
effects on relationships between gene trees and species trees. Section 1.2.2 gives a more
detailed description of the coalescent process because it is fundamental to several of the
methods included in this book (e.g., Chapters 2, 4, 5, and 6). Section 1.3 then builds on
this by describing methods for modeling nucleotide sequence evolution along gene trees.

1.2.1 Evolutionary Mechanisms for Gene Tree Discord

Maddison (1997) provides a very comprehensive description of the processes mentioned
below, with explicit discussion of the effects of these processes on individual gene
histories. Here we provide the following brief descriptions:

e Horizontal gene transfer is a term used to describe a process by which genetic
material is transferred from one species to another at a given point in time (thus
corresponding to genetic exchange that occurs “horizontally” across a phylogeny),
rather than from parent to offspring (which occurs “vertically” on a phylogeny). This
could happen, for instance, when a vector such as a virus carries DNA from one
species to another and this genetic material is subsequently integrated into the
genome of the infected organism. Horizontal gene transfer events are known to occur
commonly in the bacteria (Medigue et al. 1991; Syvanen 1994; Valdez and Pinero
1992). Horizontally transferred genes will, at least initially, be more closely related
to the ancestors of the organism from which they were derived than to those in which
they currently reside, thus leading to gene trees that differ from the species tree.

» Gene duplication refers to the event that a copy of a particular gene is inserted into
the genome, followed by the subsequent (and separate) evolution of the two copies.
If a single copy of the gene is sampled from each organism, the sampling of a
duplicated gene might result in the observation of a gene tree that differs from the
species tree. Gene duplication events are prevalent in plants, fish, and insects.

e Hybridization between species occurs when two distinct species interbreed, with the
resulting formation of hybrid organisms that share some genetic material from each
of the parental organisms. When hybridization occurs without formation of a new
taxonomic lineage that is distinct from the parental lineages from which it was
formed, the process is often referred to as introgression or introgressive hybridiza-
tion. Hybridization is ubiquitous in nature, with current estimates that approximately
25% of plants and 10% of animals hybridize (Mallet 2007).

» Incomplete lineage sorting occurs when multiple gene lineages persist through spe-
ciation events. Following a speciation event, some forms of the gene may be lost,
while others are maintained and continue to evolve. This process is illustrated in
Figure 1.2a, which shows a species tree for three taxa (outlined in bold, black lines)
with several embedded gene trees (thinner, colored lines). For example, in the green
gene tree, gene lineage C fails to find a most recent common ancestor with gene
lineage B during time interval ¢, and instead finds a most recent common ancestor
with gene lineage A above the root of the species tree. This leads to a gene tree that
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Figure 1.2 Topology probabilities under the coalescent model for three-taxon trees. (a) The
species tree is shown outlined in black. The time interval between the two speciation events is z,
and should be interpreted in coalescent units (number of 2N generations). The four embedded trees
are the four possible gene histories when deep coalescent events are allowed. (b) The four possible
gene histories from (a) are shown separately, with their probabilities under the coalescent model
given beneath. Note that the two gene histories in the first row are the same when only the topology
is considered, so that the probability of this gene tree topology under the coalescent model is the
sum of these two probabilities. Thus, there are only three distinct gene tree topologies in the
three-taxon case. (c) Probabilities of each of three gene tree topologies under the coalescent model
as a function of the interval of time between speciation events, . Note that the “blue” and “green”
gene trees always have the same probabilities. Note also that as f increases, the probability of the
“red” gene tree (which is the gene tree with the same topology as the species tree) approaches 1.

differs from the species tree (Fig. 1.2b). It is clear that the possibility of such events
can result in gene trees that differ in substantial and important ways from the species
tree. This process is commonly modeled by the coalescent.

1.2.2 The Coalescent Process and Gene Tree Distributions

Several of the chapters included in this volume develop methodologies for species tree
estimation that utilize the coalescent process as a model for the relationship between gene
trees and a species tree. For this reason, we include here a more detailed introduction to
the basic ideas underlying this process. Excellent books on this topic include the recent
works of Hein et al. (2004) and Wakeley (2009).

The coalescent, or the coalescent process, refers to a mathematical model for the
random joining of sampled gene lineages as they are followed back in time. In most



