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Preface

Lie algebras arise naturally in various areas of mathematics and physics.
However, such a Lie algebra is often only known by a presentation such as
a multiplication table, a set of generating matrices, or a set of generators
and relations. These presentations by themselves do not reveal much of
the structure of the Lie algebra. Furthermore, the objects involved (e.g., a
multiplication table, a set of generating matrices, an ideal in the free Lie
algebra) are often large and complex and it is not easy to see what to do
with them. The advent of the computer however, opened up a whole new
range of possibilities: it made it possible to work with Lie algebras that are
too big to deal with by hand. In the early seventies this moved people to
invent and implement algorithms for analyzing the structure of a Lie algebra
(see, e.g., [7], [8]). Since then many more algorithms for this purpose have
been developed and implemented.

The aim of the present work is two-fold. Firstly it aims at giving an
account of many existing algorithms for calculating with finite-dimensional
Lie algebras. Secondly, the book provides an introduction into the theory
of finite-dimensional Lie algebras. These two subject areas are intimately
related. First of all, the algorithmic perspective often invites a different
approach to the theoretical material than the one taken in various other
monographs (e.g., [42], [48], [77], [86]). Indeed, on various occasions the
knowledge of certain algorithms allows us to obtain a straightforward proof
of theoretical results (we mention the proof of the Poincaré-Birkhoff-Witt
theorem and the proof of Iwasawa’s theorem as examples). Also proofs that
contain algorithmic constructions are explicitly formulated as algorithms
(an example is the isomorphism theorem for semisimple Lie algebras that
constructs an isomorphism in case it exists). Secondly, the algorithms can
be used to arrive at a better understanding of the theory. Performing the
algorithms in concrete examples, calculating with the concepts involved,
really brings the theory to life.

The book is roughly organized as follows. Chapter 1 contains a general
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introduction into the theory of Lie algebras. Many definitions are given
that are needed in the rest of the book. Then in Chapters 2 to 5 we explore
the structure of Lie algebras. The subject of Chapter 2 is the structure of
nilpotent and solvable Lie algebras. Chapter 3 is devoted to Cartan subalge-
bras. These are immensely powerful tools for investigating the structure of
semisimple Lie algebras, which is the subject of Chapters 4 and 5 (which cul-
minate in the classification of the semisimple Lie algebras). Then in Chapter
6 we turn our attention towards universal enveloping algebras. These are
of paramount importance in the representation theory of Lie algebras. In
Chapter 7 we deal with finite presentations of Lie algebras, which form a
very concise way of presenting an often high dimensional Lie algebra. Fi-
nally Chapter 8 is devoted to the representation theory of semisimple Lie
algebras. Again Cartan subalgebras play a pivotal role, and help to de-
termine the structure of a finite-dimensional module over a semisimple Lie
algebra completely. At the end there is an appendix on associative alge-
bras, that contains several facts on associative algebras that are needed in
the book.

Along with the theory numerous algorithms are described for calculating
with the theoretical concepts. First in Chapter 1 we discuss how to present
a Lie algebra on a computer. Of the algorithms that are subsequently
given we mention the algorithm for computing a direct sum decomposition
of a Lie algebra, algorithms for calculating the nil- and solvable radicals,
for calculating a Cartan subalgebra, for calculating a Levi subalgebra, for
constructing the simple Lie algebras (in Chapter 5 this is done by directly
giving a multiplication table, in Chapter 7 by giving a finite presentation),
for calculating Grobner bases in several settings (in a universal enveloping
algebra, and in a free Lie algebra), for calculating a multiplication table
of a finitely presented Lie algebra, and several algorithms for calculating
combinatorial data concerning representations of semisimple Lie algebras.
In Appendix A we briefly discuss several algorithms for associative algebras.

Every chapter ends with a section entitled “Notes”, that aims at giving
references to places in the literature that are of relevance to the particular
chapter. This mainly concerns the algorithms described, and not so much
the theoretical results, as there are standard references available for them
(e.g., [42], [48], [77], [86]).

I have not carried out any complexity analyses of the algorithms de-
scribed in this book. The complexity of an algorithm is a function giving an
estimate of the number of “primitive operations” (e.g., arithmetical opera-
tions) carried out by the algorithm in terms of the size of the input. Now
the size of a Lie algebra given by a multiplication table is the sum of the
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sizes of its structure constants. However, the number of steps performed by
an algorithm that operates on a Lie algebra very often depends not only on
the size of the input, but also (rather heavily) on certain structural prop-
erties of the input Lie algebra (e.g., the length of its derived series). Of
course, it is possible to consider only the worst case, i.e., Lie algebras hav-
ing a structure that poses most difficulties for the algorithm. However, for
most algorithms it is far from clear what the worst case is. Secondly, from a
practical viewpoint worst case analyses are not very useful since in practice
one only very rarely encounters the worst case.

Of the algorithms discussed in this book many have been implemented
inside several computer algebra systems. Of the systems that support Lie
algebras we mention GAP4 ([31]), LiE ([21]) and Magma ([22]). We refer to
the manual of each system for an account of the functions that it contains.

I would like to thank everyone who, directly or indirectly, helped me
write this book. In particular I am grateful to Arjeh Cohen, without whose
support this book never would have been written, as it was his idea to write
it in the first place. I am also grateful to Gdbor Ivanyos for his valuable
remarks on the appendix. Also I gratefully acknowledge the support of the
Dutch Technology Foundation (STW) who financed part of my research.

Willem de Graaf
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Chapter 1

Basic constructions

This chapter serves two purposes. First of all it provides an introduction
into the theory of Lie algebras. In the first four sections we define what a
Lie algebra is, and we give a number of examples of Lie algebras. In Section
1.5 we discuss some generalities concerning algorithms. Furthermore, we
describe our approach to calculating with Lie algebras. We describe how
to represent a Lie algebra on a computer (namely by an array of structure
constants), and we give two examples of algorithms. In subsequent sections
we give several constructions of Lie algebras and objects related to them.
In many cases these constructions are accompanied by a an algorithm that
performs the construction.

A second purpose of this chapter is to serve as reference for later chap-
ters. This chapter contains most basic constructions used in this book.
Therefore it has the nature of a collection of sections, sometimes without
clear line of thought connecting them.

1.1 Algebras: associative and Lie

Definition 1.1.1 An algebra is a vector space A over a field F' together
with a bilinear map m: A x A — A.

The bilinear map m of Definition 1.1.1 is called a multiplication. If A is
an algebra and z,y € A, then we usually write zy instead of m(z,y).

Because an algebra A is a vector space, we can consider subspaces of A.
A subspace B C A is called a subalgebra if xy € B for all z,y € B. It is
called an ideal if zy and yx lie in B for all z € A and y € B. Clearly an
ideal is also a subalgebra.

Let A and B be two algebras over the field F. A linear map §: A — B
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is called a morphism of algebras if 6(zy) = 6(z)0(y) for all z,y € A (where
the product on the left hand side is taken in A and the product on the right
hand side in B). The map 6 is an isomorphism of algebras if 6 is bijective.

Definition 1.1.2 An algebra A is said to be associative if for all elements
z,y,z € A we have

(zy)z = z(yz) (associative law).

Definition 1.1.3 An algebra L is said to be a Lie algebra if its multiplica-
tion has the following properties:

(L) zx =0 for allx € L,

(Ly) z(yz) +y(zz) + z(zy) = 0 for all z,y,z € L (Jacobi identity).

Let L be a Lie algebra and let 2,y € L. Then 0 = (z + y)(z + y) =
zx + 2y + yz + yy = Ty + yz. So condition (L;) implies

zy = —yz for all z,y € L. (1.1)

On the other hand (1.1) implies zz = —zz, or 2z = 0 for all z € L. The
conclusion is that if the characteristic of the ground field is not 2, then
(L) is equivalent to (1.1). Using (1.1) we see that the Jacobi identity is
equivalent to (zy)z + (yz)z + (zz)y = 0 for all z,y,z € L.

Example 1.1.4 Let V be an n-dimensional vector space over the field F'.
Here we consider the vector space End(V') of all linear maps from V to V.
If a,b € End(V) then their product is defined by

ab(v) = a(b(v)) for all v € V.

This multiplication makes End(V') into an associative algebra.

For a,b € End(V') we set [a,b] = ab— ba The bilinear map (a,b) — [a, b]
is called the commutator, or Lie bracket. We verify the requirements (L)
and (Lj) for the Lie bracket. First we have [a,a] = aa —aa = 0 so that (L)
is satisfied. Secondly,

[a, [b, c]] + [b, [, a]] + [c, [a, b]] =
a(bc — ¢b) — (be — ¢b)a + b(ca — ac)
— (ca — ac)b + c(ab — ba) — (ab — ba)c = 0.
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Hence also (Lg) holds for the commutator. It follows that the space of
linear maps from V to V together with the commutator is a Lie algebra.
We denote it by gi(V).

Now fix a basis {v1,...,v,} of V. Relative to this basis every linear
transformation can be represented by a matrix. Let M,(F') be the vector
space of all n x n matrices over F'. The usual matrix multiplication makes
M, (F) into an associative algebra. It is isomorphic to the algebra End(V),
the isomorphism being the map that sends a linear transformation to its
matrix with respect to the fixed basis. Analogously we let gl (F') be the Lie
algebra of all n x n matrices with coefficients in F. It is equipped with the
product (a,b) — [a,b] = ab — ba for a,b € gl,(F). The map that sends a
linear transformation to its matrix relative to a fixed basis is an isomorphism
of gl(V) onto gl,,(F).

Let A be an algebra and let B C A be a subalgebra. Then B is an
algebra in its own right, inheriting the multiplication from its “parent” A.
Furthermore, if A is a Lie algebra then clearly B is also a Lie algebra,
and likewise if A is associative. If B happens to be an ideal, then, by
the following proposition, we can give the quotient space A/B an algebra
structure. The algebra A/B is called the quotient algebra of A and B.

Proposition 1.1.5 Let A be an algebra and let B C A be an ideal. Let
A/B denote the quotient space. Then the multiplication on A induces a
multiplication on A/B by Ty = Ty (where T denotes the coset of x € A in
A/B). Furthermore, if A is a Lie algebra, then so is A/B (and likewise if
A is an associative algebra).

Proof. First of all we check that the multiplication on A/B is well defined.
So let z,y € A and b,by € B. Then Z =z + b; and § = y + by and hence

2y = (2 +b1) (y +b2) = (2 + b1)(y + bo) = 2y + zby + b1y + biby = 7.

Consequently the product g is independent of the particular representa-
tives of z and gy chosen.

The fact that the Lie (respectively associative) structure is carried over
to A/B is immediate. O

Associative algebras and Lie algebras are intimately related in the sense
that given an associative algebra we can construct a related Lie algebra and
the other way round. First let A be an associative algebra. The commutator
yields a bilinear operation on A, i.e., [z,y] = 2y — yz for all z,y € A, where
the products on the right are the associative products of A. Let Ap;. be
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the underlying vector space of A together with the product [, ]. It is
straightforward to check that Ar;. is a Lie algebra (cf. Example 1.1.4). In
Chapter 6 we will show that every Lie algebra occurs as a subalgebra of a
Lie algebra of the form Aj;. where A is an associative algebra. (This is the
content of the theorems of Ado and Iwasawa.) For this reason we will use
square brackets to denote the product of any Lie algebra.

From a Lie algebra we can construct an associative algebra. Let L be a
Lie algebra over the field . For z € L we define a linear map

adpr: L — L

by adpz(y) = [z,y] for y € L. This map is called the adjoint map determined
by z. If there can be no confusion about the Lie algebra to which = belongs,
we also write adz in place of ad;z. We consider the subalgebra of End(L)
generated by the identity mapping together with {adz | z € L} (i.e., the
smallest subalgebra of End(L) containing 1 and this set). This associative
algebra is denoted by (adL)*.

Since adz is the left multiplication by z, the adjoint map encodes parts
of the multiplicative structure of L. We will often study the structure of a
Lie algebra L by investigating its adjoint map. This will allow us to use the
tools of linear algebra (matrices, eigenspaces and so on). Furthermore, as
will be seen, the associative algebra (adL)* can be used to obtain valuable
information about the structure of L (see, e.g., Section 2.2).

1.2 Linear Lie algebras

In Example 1.1.4 we encountered the Lie algebra gl,(F') consisting of all
n X n matrices over the field F. By Ez’; we will denote the n x n matrix
with a 1 on position (¢, j) and zeros elsewhere. If it is clear from the context
which n we mean, then we will often omit it and write E;; in place of E{;
So a basis of gl,,(F) is formed by all E;; for 1 <i,5 <n.

Subalgebras of gl (F) are called linear Lie algebras. In this section we
construct several linear Lie algebras.

Example 1.2.1 For a matrix a let Tr(a) denote the trace of a. Let a,b €
gl,,(F), then

Tr([a,b]) = Tr(ab — ba) = Tr(ab) — Tr(ba) = Tr(ab) — Tr(ab) = 0. (1.2)

Set sl,(F) = {a € gl,(F) | Tr(a) = 0}, then, since the trace is a linear
function, sl,(F) is a linear subspace of gl,(F'). Moreover, by (1.2) we see
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that [a,b] € sl (F) if a,b € sl,,(F). Hence sl,,(F) is a subalgebra of gl (F).
It is called the special linear Lie algebra. The Lie algebra sl,, (F') is spanned
by all E;; for ¢ # j together with the diagonal matrices E;; — Ejy1;41 for
1 <i < n— 1. Hence the dimension of sl, (F) is n? — 1.

Let V be an n-dimensional vector space over F'. We recall that a bilinear
form f on V is a bilinear function f : V. xV — F. It is symmetric if
f(v,w) = f(w,v) and skew symmetric if f(v,w) = —f(w,v) for allv,w € V.
Furthermore, f is said to be non-degenerate if f(v,w) = 0 for all w € V
implies v = 0. For a bilinear form f on V' we set

Ly ={aegl(V)] flav,w) = —f(v,aw) for all v,w € V'}, (1.3)
which is a linear subspace of gl(V).

Lemma 1.2.2 Let f be a bilinear form on the n-dimensional vector space
V. Then Ly is a subalgebra of gl(V').

Proof. For a,b € Ly we calculate

f([a, b]v,w) = f((ab — ba)v,w) = f(abv,w) — f(bav,w)
= — f(bv,aw) + f(av,bw) = f(v,baw) — f(v,abw) = — f(v, [a, bjw).

So for each pair of elements a,b € L we have that [a,b] € Ly and hence Ly
is a subalgebra of gl(V'). |

Now we fix a basis {v1,... ,v,} of V. This allows us to identify V' with
the vector space F™ of vectors of length n. Also, as pointed out in Example
1.1.4, we can identify gl(V') with gl,,(F), the Lie algebra of all n x n matrices
over F'. We show how to identify L; as a subalgebra of gl,(F). Let My
be the n x n matrix with on position (¢, j) the element f(v;,v;). Then a
straightforward calculation shows that f(v,w) = v'Mjw (where v' denotes
the transpose of v). The condition for a € gl,(F) to be an element of Ly
translates to v'a' Myw = —v'Myaw which must hold for all v,w € F". Tt
follows that a € Ly if and only if a’M; = —Mja.

The next three examples are all of the form of L for some non-degenerate
bilinear form f.

Example 1.2.3 Let f be a non-degenerate skew symmetric bilinear form

with matrix
(0 I
My = (—1, 0)’



