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Preface

Proof theory is the study of proofs as formal objects and is concerned with a
broad range of related topics. It is one of the central topics of mathematical logic and
has applications in many areas of mathematics, philosophy, and computer science.
Historically, proof theory was developed by mathematicians and philosophers as
a formalization for mathematical reasoning; however, proof theory has gradually
become increasingly important for computer science, and nowadays proof theory and
theoretical computer science are recognized as being very closely connected.

This volume contains articles covering a broad spectrum of proof theory, with an
emphasis on its mathematical aspects. The articles should not only be interesting
to specialists in proof theory, but should also be accessible to a diverse audience,
including logicians, mathematicians, computer scientists and philosophers. We
have attempted to include many of the central topics in proof theory; but have
opted to have self-contained expository articles, rather than to have encyclopedic
coverage. Thus, a number of important topics have been largely omitted, but with
the advantage that the included material is covered in more detail and at greater
depth.

The chapters are arranged so that the two introductory articles come first; these
are then followed by articles from the core classical areas of proof theory; finally the
handbook ends with articles that deal with topics closely related to computer science.

This handbook was initiated at the suggestion of the publisher, as a partial
successor to the very successful Handbook of Mathematical Logic, edited by J. Barwise.
Only one quarter of the 1977 Handbook of Mathematical Logic was devoted to proof
theory, and since then there has been considerable progress in this area; as a
result, there is remarkably little overlap between the contents of the Handbook of
Mathematical Logic and the present volume.

Sam Buss
La Jolla, California
November 1997
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2 S. Buss

Proof Theory is the area of mathematics which studies the concepts of mathemat-
ical proof and mathematical provability. Since the notion of “proof” plays a central
role in mathematics as the means by which the truth or falsity of mathematical
propositions is established; Proof Theory is, in principle at least, the study of
the foundations of all of mathematics. Of course, the use of Proof Theory as a
foundation for mathematics is of necessity somewhat circular, since Proof Theory is
itself a subfield of mathematics.

There are two distinct viewpoints of what a mathematical proof is. The first view
is that proofs are social conventions by which mathematicians convince one another
of the truth of theorems. That is to say, a proof is expressed in natural language
plus possibly symbols and figures, and is sufficient to convince an expert of the
correctness of a theorem. Examples of social proofs include the kinds of proofs that
are presented in conversations or published in articles. Of course, it is impossible to
precisely define what constitutes a valid proof in this social sense; and, the standards
for valid proofs may vary with the audience and over time. The second view of proofs
is more narrow in scope: in this view, a proof consists of a string of symbols which
satisfy some precisely stated set of rules and which prove a theorem, which itself must
also be expressed as a string of symbols. According to this view, mathematics can
be regarded as a ‘game’ played with strings of symbols according to some precisely
defined rules. Proofs of the latter kind are called “formal” proofs to distinguish them
from “social” proofs.

In practice, social proofs and formal proofs are very closely related. Firstly,
a formal proof can serve as a social proof (although it may be very tedious and
unintuitive) provided it is formalized in a proof system whose validity is trusted.
Secondly, the standards for social proofs are sufficiently high that, in order for a
proof to be socially accepted, it should be possible (in principle!) to generate a formal
proof corresponding to the social proof. Indeed, this offers an explanation for the fact
that there are generally accepted standards for social proofs; namely, the implicit
requirement that proofs can be expressed, in principle, in a formal proof system
enforces and determines the generally accepted standards for social proofs.

Proof Theory is concerned almost exclusively with the study of formal proofs:
this is justified, in part, by the close connection between social and formal proofs,
and it is necessitated by the fact that only formal proofs are subject to mathematical
analysis. The principal tasks of Proof Theory can be summarized as follows. First, to
formulate systems of logic and sets of axioms which are appropriate for formalizing
mathematical proofs and to characterize what results of mathematics follow from
certain axioms; or, in other words, to investigate the proof-theoretic strength of
particular formal systems. Second, to study the structure of formal proofs; for
instance, to find normal forms for proofs and to establish syntactic facts about
proofs. This is the study of proofs as objects of independent interest. Third, to study
what kind of additional information can be extracted from proofs beyond the truth
of the theorem being proved. In certain cases, proofs may contain computational or
constructive information. Fourth, to study how best to construct formal proofs; e.g.,
what kinds of proofs can be efficiently generated by computers?
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The study of Proof Theory is traditionally motivated by the problem of formaliz-
ing mathematical proofs; the original formulation of first-order logic by Frege [1879]
was the first successful step in this direction. Increasingly, there have been attempts
to extend Mathematical Logic to be applicable to other domains; for example,
intuitionistic logic deals with the formalization of constructive proofs, and logic
programming is a widely used tool for artificial intelligence. In these and other
domains, Proof Theory is of central importance because of the possibility of computer
generation and manipulation of formal proofs.

This handbook covers the central areas of Proof Theory, especially the math-
ematical aspects of Proof Theory, but largely omits the philosophical aspects of
proof theory. This first chapter is intended to be an overview and introduction to
mathematical proof theory. It concentrates on the proof theory of classical logic,
especially propositional logic and first-order logic. This is for two reasons: firstly,
classical first-order logic is by far the most widely used framework for mathematical
reasoning, and secondly, many results and techniques of classical first-order logic
frequently carryover with relatively minor modifications to other logics.

This introductory chapter will deal primarily with the sequent calculus, and
resolution, and to lesser extent, the Hilbert-style proof systems and the natural
deduction proof system. We first examine proof systems for propositional logic,
then proof systems for first-order logic. Next we consider some applications of cut
elimination, which is arguably the central theorem of proof theory. Finally, we review
the proof theory of some non-classical logics, including intuitionistic logic and linear
logic.

1. Prooftheory of propositional logic

Classical propositional logic, also called sentential logic, deals with sentences and
propositions as abstract units which take on distinct True/False values. The basic
syntactic units of propositional logic are variables which represent atomic propo-
sitions which may have value either True or False. Propositional variables are
combined with Boolean functions (also called connectives): a k-ary Boolean function
is a mapping from {T, F'}* to {T, F} where we use T and F to represent True and
False. The most frequently used examples of Boolean functions are the connectives T
and L which are the 0-ary functions with values T' and F, respectively; the binary
connectives A, V, D, <> and @ for “and”, “or”, “if-then”, “if-and-only-if” and
“parity”; and the unary connective — for negation. Note that V is the inclusive-or
and @ is the exclusive-or.

We shall henceforth let the set of propositional variables be V' = {p1,po, ps, . . .};
however, our theorems below hold also for uncountable sets of propositional variables.
The set of formulas is inductively defined by stating that every propositional variable
isa formula, and that if A and B are formulas, then (—A), (AAB), (AVB), (A D B),
etc., are formulas. A truth assignment consists of an assignment of True/False values
to the propositional variables, i.e., a truth assignment is a mapping 7 : V' — {T, F'}.
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A truth assignment can be extended to have domain the set of all formulas in the
obvious way, according to Table 1; we write 7(A) for the truth value of the formula A
induced by the truth assignment 7.

Table 1
Values of a truth assignment 7

A B (~A) (AAB) (AvB) (ADB) (A& B) (A®B)
T T F T T T T F
T F F F T F F T
F T T F T T F T
F F T F F T T F
A formula A involving only variables among ps, ..., px defines a k-ary Boolean

function fa, by letting fa(z1,...,zx) equal the truth value 7(A) where 7(p;) = z;
for all :. A language is a set of connectives which may be used in the formation of
L-formulas. A language L is complete if and only if every Boolean function can be
defined by an L-formula. Propositional logic can be formulated with any complete
(usually finite) language L — for the time being, we shall use the language -, A, V
and D.

A propositional formula A is said to be a tautology or to be (classically) valid if
A is assigned the value T by every truth assignment. We write F A to denote that
A is a tautology. The formula A is satisfiable if there is some truth assignment that
gives it value T'. If T is a set of propositional formulas, then I is satisfiable if there
is some truth assignment that simultaneously satisfies all members of I'. We say
I tautologically implies A, or I' F A, if every truth assignment which satisfies I' also
satisfies A.

One of the central problems of propositional logic is to find useful methods for
recognizing tautologies; since A is a tautology if and only if —A is not satisfiable, this
is essentially the same as the problem of finding methods for recognizing satisfiable
formulas. Of course, the set of tautologies is decidable, since to verify that a formula A
with n distinct propositional variables is a tautology, one need merely check that
the 2™ distinct truth assignments to these variables all give A the value T'. This
brute-force ‘method of truth-tables’ is not entirely satisfactory; firstly, because it can
involve an exorbitant amount of computation, and secondly, because it provides no
intuition as to why the formula is, or is not, a tautology.

For these reasons, it is often advantageous to prove that A is a tautology instead
of using the method of truth-tables. The next three sections discuss three commonly
used propositional proof systems. The so-called Frege proof systems are perhaps the
most widely used and are based on modus ponens. The sequent calculus systems
provide an elegant proof system which combines both the possibility of elegant proofs
and the advantage of an extremely useful normal form for proofs. The resolution
refutation proof systems are designed to allow for efficient computerized search for
proofs. Later, we will extend these three systems to first-order logic.
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1.1. Frege proof systems

The mostly commonly used propositional proof systems are based on the use of
modus ponens as the sole rule of inference. Modus ponens is the inference rule, which
allows, for arbitrary A and B, the formula B to be inferred from the two hypotheses
A D B and A; this is pictorially represented as
A ADB
B

In addition to this rule of inference, we need logical azioms that allow the inference
of ‘self-evident’ tautologies from no hypotheses. There are many possible choices for
sets of axioms: obviously, we wish to have a sufficiently strong set of axioms so that
every tautology can be derived from the axioms by use of modus ponens. In addition,
we wish to specify the axioms by a finite set of schemes.

1.1.1. Definition. A substitution o is a mapping from the set of propositional
variables to the set of propositional formulas. If A is a propositional formula, then
the result of applying ¢ to A is denoted Ao and is equal to the formula obtained by
simultaneously replacing each variable appearing in A by its image under o.

An example of a set of axiom schemes over the language —, A, V and D is given in
the next definition. We adopt conventions for omitting parentheses from descriptions
of formulas by specifying that unary operators have the highest precedence, the
connectives A and V have second highest precedence, and that D and < have
lowest precedence. All connectives of the same precedence are to be associated from
right to left; for example, A D B D C is a shorthand representation for the formula
(4> ((-B) > ().

1.1.2. Definition. Consider the following set of axiom schemes:

p 2 (p2 D) (1D p2) D (P12 —p2) D ;i
(P12Op2) D(P1 D (P22Dp3)) D(prDps) (——p) D;
P1DOp1Vp2 P1ApP2 D1
P2 D1V P2 P1A P2 D p2

(P1DOps) D(P2Dp3) D(P1VP2Dp3s) PLDOP2DpiAD:

The propositional proof system F is defined to have as its axioms every substitution
instance of the above formulas and to have modus ponens as its only rule. An
JF -proof of a formula A is a sequence of formulas, each of which is either an F-axiom
or is inferred by modus ponens from two earlier formulas in the proof, such that the
final formula in the proofis A.

We write k= A, or just - A, to say that A has an F-proof. We write ' = A4,
or just I' - A, to say that A has a proof in which each formula either is deduced
according the axioms or inference rule of F orisin I'. In this case, we say that A is
proved from the extra-logical hypotheses I'; note that I' may contain formulas which
are not tautologies.
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1.1.3. Soundness and completeness of F. It is easy to prove that every
F-provable formula is a tautology, by noting that all axioms of F are valid and that
modus ponens preserves the property of being valid. Similarly, whenever I' = A,
then I' tautologically implies A. In other words, F is (implicationally) sound, which
means that all provable formulas are valid (or, are consequences of the extra-logical
hypotheses T').

Of course, any useful proof system ought to be sound, since the purpose of creating
proofs is to establish the validity of a sentence. Remarkably, the system F is also
complete in that it can prove any valid formula. Thus the semantic notion of validity
and the syntactic notion of provability coincide, and a formula is valid if and only if
it is provable in F.

Theorem. The propositional proof system F is complete and is implicationally
complete; namely,

(1) If A is a tautology, then & A.

(2) IfTEA, thenT ¢ A.

The philosophical significance of the completeness theorem is that a finite set of
(schematic) axioms and rules of inference are sufficient to establish the validity of
any tautology. In hindsight, it is not surprising that this holds, since the method of
truth-tables already provides an algorithmic way of recognizing tautologies. Indeed,
the proof of the completeness theorem given below, can be viewed as showing that
the method of truth tables can be formalized within the system F.

1.1.4. Proof. We first observe that part (2) of the completeness theorem can be
reduced to part (1) by a two step process. Firstly, note that the compactness theorem
for propositional logic states that if I' F A then there is a finite subset 'y of I" which
also tautologically implies A. A topological proof of the compactness theorem for
propositional logic is sketched in 1.1.5 below. Thus I' may, without loss of generality,
be assumed to be a finite set of formulas, say ' = {By, ..., Bx}. Secondly, note that
' E A implies that B, D By D --- D A is a tautology. So, by part (1), the latter
formula has an F-proof, and by k additional modus ponens inferences, I' - A. (To
simplify notation, we write - instead of = .)

It remains to prove part (1). We begin by establishing a series of special cases,
(a)—(k), of the completeness theorem, in order to “bootstrap” the propositional
system F. We use symbols ¢, ¥, x for arbitrary formulas and II to represent any
set of formulas.

(a)F¢Dg.
Proof: Combine the three axioms (¢ D ¢ D ¢) D (¢ D (¢ D ¢) D @) D (¢ D ¢),
¢ D (¢ D¢) and ¢ D (¢ D @) D ¢ with two uses of modus ponens.

(b) Deduction Theorem: I',¢ - ¢ if and only if I' - ¢ D 9.
Proof: The reverse implication is trivial. To prove the forward implication, suppose
C,,Cy,...,Cy is an F-proof of ¥ from T', ¢. This means that Cy, is ¢ and that each
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C;is ¢,isin T, is an axiom, or is inferred by modus ponens. It is straightforward to
prove, by induction on i, that I' - ¢ D C; for each C;.

(c) D¢ F YD g
Proof: By the deduction theorem, it suffices to prove that ¢ D ¥, ~ F —¢. To prove
this, use the two axioms =9 D (¢ D —¢) and (¢ D ¢) D (¢ D —¥) D —¢ and three
uses of modus ponens.

(d) ¢,—¢ 3.

Proof: From the axiom ¢ D (—% D @), we have ¢ - =) D ¢. Thus, by (c) we get
¢+ ¢ DO -, and by (b), ¢,~¢ F ~—1. Finally modus ponens with the axiom
- D 1 gives the desired result.

(e) " ¢F ¢ D and Y+ ¢ D 9.
Proof: This former follows from (d) and the deduction theorem, and the latter follows
from the axiom 9 D (¢ D ¥).

(f) ¢, ¥ F (¢ D).

Proof: 1t suffices to prove ¢ - -3 D =(¢ D ). Thus, by (c) and the deduction
theorem, it suffices to prove @,¢ D @ F 1. The latter assertion is immediate from
modus ponens.

(8) 99 FdAY.
Proof: Two uses of modus ponens with the axiom ¢ D ¢ D (¢ A ¢).

(h) ~¢F =(¢ AY) and ~ - (¢ A9p).

Proof: For the first part, it suffices to show - —¢ D —(¢ A ¥), and thus, by (c), it
suffices to show - (¢ A1) D ¢, which is an axiom. The proof that -y - =(¢ A ) is
similar.

(i)pFoVyand oV
Proof: ¢ D (¢ V ¢) and ¢ D (¢ V ) are axioms.

(i) o, v F =(8V¥).
Proof: 1t suffices to prove —¢ - =) D —(¢ V 9), and this, by (c), follows from
—¢ (¢ V1) D . For this, we combine
() ~¢F¢ DY, by (e),
() F¥ Dy, by (a),
(i) F(6D¥) D (¥ DY) D((¢VY) DY), anaxiom,

with two uses of modus ponens.

(k) ¢ - .
Proof: By (d), ¢,7¢ - ——¢, and obviously, ¢, —¢ F =—¢. So ¢ F ~—¢ follows
from the next lemma.

1.1.4.1. Lemma. IfT,¢+ v andT,~¢ 1, then T F 9.
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Proof. By (b) and (c), the two hypotheses imply that '+ -¢) D =¢ and ' F —¢p D
——¢. These plus the two axioms (—¢ D —=¢) D (-¢ D =—¢) D -~ and -~y D ¥
give 'Fey. O

1.1.4.2. Lemma. Letthe formula A involve only the propositional variables among
D1y -y Pn- For 1 <1< n, suppose that B; is either p; or —p;. Then, either

Bi,....B,FA ot Bi,...,B.,tF-A.

Proof. Define 7 to be a truth assignment that makes each B; true. By the soundness
theorem, A (respectively, —A), can be proved from the hypotheses By, ..., B, only
if 7(A) = T (respectively T(A) = F'). Lemma 1.1.4.2 asserts that the converse holds
too.

The lemma is proved by induction on the complexity of A. In the base case,
A is just p;: this case is trivial to prove since B; is either p; or —p;. Now suppose
A is a formula A; V Ay. If 0(A) = T, then we must have 7(4;) = T for some
it € {1,2}; the induction hypothesis implies that Bj,..., B, - A; and thus, by (i)
above, By,..., By, A. On the other hand, if 7(A) = F, then 7(A;) = 7(43) = F,
so the induction hypothesis implies that B,,..., B, F —A; forboth i =1 and i = 2.
From this, (j) implies that Bj,...,B, - =A. The cases where A has outermost
connective A, D or — are proved similarly. O.

We are now ready to complete the proof of the Completeness Theorem 1.1.3.
Suppose A is a tautology. We claim that Lemma 1.1.4.2 can be strengthened to have

Bi,...,BiF A

where, as before each B; is either p; or —p;, but now 0 < k < n is permitted.
We prove this by induction on £ = n,n —1,...,1,0. For k = n, this is just
Lemma 1.1.4.2. For the induction step, note that Bi,...,By - A follows from
By,...,Bg,pky1 F A and By,..., B, prs1 H A by Lemma 1.1.4.1. When k = 0,
we have that - A, which proves the Completeness Theorem.

Q.E.D. Theorem 1.1.3

1.1.5. It still remains to prove the compactness theorem for propositional logic.
This theorem states:

Compactness Theorem. Let I' be a set of propositional formulas.
(1) T 1s satisfiable if and only if every finite subset of T s satisfiable.
(2) T E A if and only if there is a finite subset Ty of T such that Ty F A.

Since I' E A is equivalent to T'U {—A} being unsatisfiable, (2) is implied by (1). It is
fairly easy to prove the compactness theorem directly, and most introductory books
in mathematical logic present such a proof. Here, we shall instead, give a proof based
on the Tychonoff theorem; obviously this connection to topology is the reason for the
name ‘compactness theorem.’
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Proof. Let V be the set of propositional variables used in T'; the sets I" and V
need not necessarily be countable. Let 2V denote the set of truth assignments on V
and endow 2¥ with the product topology by viewing it as the product of |V| copies
of the two element space with the discrete topology. That is to say, the subbasis
elements of 2 are the sets B,; = {7 : 7(p) =i} for p € V and i € {T, F}. Note
that these subbasis elements are both open and closed. Recall that the Tychonoff
theorem states that an arbitrary product of compact spaces is compact; in particular,
2V is compact. (See Munkres [1975] for background material on topology.)

For ¢ € T, define Dy = {r € 2V : 7 F ¢}. Since ¢ only involves finitely many
variables, each D, is both open and closed. Now I' is satisfiable if and only if Nger Dy
is non-empty. By the compactness of 2V, the latter condition is equivalent to the
sets Nger, Dy being non-empty for all finite I'y C I'. This, in turn is equivalent to
each finite subset 'y of I' being satisfiable. O

The compactness theorem for first-order logic is more difficult; a purely model-
theoretic proof can be given with ultrafilters (see, e.g., Eklof [1977]). We include a
proof-theoretic proof of the compactness theorem for first-order logic for countable
languages in section 2.3.7 below.

1.1.6. Remarks. There are of course a large number of possible ways to give
sound and complete proof systems for propositional logic. The particular proof
system F used above is adapted from Kleene [1952]. A more detailed proof of the
completeness theorem for F and for related systems can be found in the textbook
of Mendelson [1987]. The system F is an example of a class of proof systems called
Frege proof systems: a Frege proof system is any proof system in which all axioms and
rules are schematic and which is implicationally sound and implicationally complete.
Most of the commonly used proof systems similar to F are based on modus ponens
as the only rule of inference; however, some (non-Frege) systems also incorporate a
version of the deduction theorem as a rule of inference. In these systems, if B has
been inferred from A, then the formula A O B may also be inferred. An example
of such a system is the propositional fragment of the natural deduction proof system
described in section 2.4.8 below.

Other rules of inference that are commonly allowed in propositional proof systems
include the substitution rule which allows any instance of ¢ to be inferred from ¢, and
the eztension rule which permits the introduction of abbreviations for long formulas.
These two systems appear to be more powerful than Frege systems in that they seem
to allow substantially shorter proofs of certain tautologies. However, whether they
actually are significantly more powerful than Frege systems is an open problem. This
issues are discussed more fully by Pudlak in Chapter VIII.

There are several currently active areas of research in the proof theory of propo-
sitional logic. Of course, the central open problem is the P versus NP question of
whether there exists a polynomial time method of recognizing tautologies. Research
on the proof theory of propositional logic can be, roughly speaking, separated into
three problem areas. Firstly, the problem of “proof-search” is the question of
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what are the best algorithmic methods for searching for propositional proofs. The
proof-search problem is important for artificial intelligence, for automated theorem
proving and for logic programming. The most common propositional proof systems
used for proof-search algorithms are variations of the resolution system discussed
in 1.3 below. A second, related research area is the question of proof lengths. In
this area, the central questions concern the minimum lengths of proofs needed for
tautologies in particular proof systems. This topic is treated in more depth in
Chapter VIII in this volume.

A third research area concerns the investigation of fragments of the propositional
proof system F. For example, propositional intuitionist logic is the logic which
is axiomatized by the system JF without the axiom scheme -—A D A. Another
important example is linear logic. Brief discussions of these two logics can be found
in section 3.

1.2. The propositional sequent calculus

The sequent calculus, first introduced by Gentzen [1935] as an extension of his earlier
natural deduction proof systems, is arguably the most elegant and flexible system for
writing proofs. In this section, the propositional sequent calculus for classical logic
is developed; the extension to first-order logic is treated in 2.3 below.

1.2.1. Sequents and Cedents. In the Hilbert-style systems, each line in a proof
is a formula; however, in sequent calculus proofs, each line in a proof is a sequent: a
sequent is written in the form

Ay,...,Ax—B1,..., B,

where the symbol — is a new symbol called the sequent arrow (not to be confused
with the implication symbol D) and where each A; and B; is a formula. The intuitive
meaning of the sequent is that the conjunction of the A;’s implies the disjunction of
the B;’s. Thus, a sequent is equivalent in meaning to the formula

The symbols /\ and \/ represent conjunctions and disjunctions, respectively, of
multiple formulas. We adopt the convention that an empty conjunction (say, when
k = 0 above) has value “True”, and that an empty disjunction (say, when ¢ = 0
above) has value “False”. Thus the sequent —> A has the same meaning as the
formula A, and the empty sequent — is false. A sequent is defined to be valid or a
tautology if and only if its corresponding formula is.

The sequence of formulas A;,...,A; is called the antecedent of the sequent
displayed above; Bji,..., B, is called its succedent . They are both referred to as
cedents.



