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Preface

This volume contains papers presented at the joint 14th Annual Conference
on Computational Learning Theory and 5th European Conference on Computa-
tional Learning Theory, held at the Trippenhuis in Amsterdam, The Netherlands
from July 16 to 19, 2001.

The technical program contained 40 papers selected from 69 submissions. In
addition, David Stork (Ricoh California Research Center) was invited to give an
invited lecture and make a written contribution to the proceedings.

The Mark Fulk Award is presented annually for the best paper co-authored
by a student. This year’s award was won by Olivier Bousquet for the paper
“Tracking a Small Set of Modes by Mixing Past Posteriors” (co-authored with
Manfred Warmuth).

We gratefully thank all of the individuals and organizations responsible for
the success of the conference. We are especially grateful to the program commit-
tee: Dana Angluin (Yale), Peter Auer (Univ. of Technology, Graz), Nello Chris-
tianini (Royal Holloway), Claudio Gentile (Universita di Milano), Lisa Heller-
stein (Polytechnic Univ.), Jyrki Kivinen (Univ. of Helsinki), Phil Long (Na-
tional Univ. of Singapore), Manfred Opper (Aston Univ.), John Shawe-Taylor
(Royal Holloway), Yoram Singer (Hebrew Univ.), Bob Sloan (Univ. of Illinois
at Chicago), Carl Smith (Univ. of Maryland), Alex Smola (Australian National
Univ.), and Frank Stephan (Univ. of Heidelberg), for their efforts in reviewing
and selecting the papers in this volume.

Special thanks go to our conference co-chairs, Peter Griinwald and Paul
Vitanyi, as well as Marja Hegt. Together they handled the conference publicity
and all the local arrangements to ensure a successful conference. We would also
like to thank ACM SIGACT for the software used in the program committee
deliberations and Stephen Kwek for maintaining the COLT web site.

Finally, we would like to thank The National Research Institute for Math-
ematics and Computer Science in the Netherlands (CWI), The Amsterdam
Historical Museum, and The Netherlands Organization for Scientific Research
(NWO) for their sponsorship of the conference.

May 2001 David Helmbold
Bob Williamson

Program Co-chairs
COLT/EuroCOLT 2001
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How Many Queries Are Needed
to Learn One Bit of Information?*

Hans Ulrich Simon!

Fakultit fiir Mathematik, Ruhr-Universitat Bochum, D-44780 Bochum, Germany
simon@lmi.ruhr-uni-bochum.de

Abstract. In this paper we study the question how many queries are
needed to “halve a given version space”. In other words: how many
queries are needed to extract from the learning environment the one
bit of information that rules out fifty percent of the concepts which are
still candidates for the unknown target concept. We relate this problem
to the classical exact learning problem. For instance, we show that lower
bounds on the number of queries needed to halve a version space also
apply to randomized learners (whereas the classical adversary arguments
do not readily apply). Furthermore, we introduce two new combinato-
rial parameters, the halving dimension and the strong halving dimen-
sion, which determine the halving complexity (modulo a small constant
factor) for two popular models of query learning: learning by a mini-
mum adequate teacher (equivalence queries combined with membership
queries) and learning by counterexamples (equivalence queries alone).
These parameters are finally used to characterize the additional power
provided by membership queries (compared to the power of equivalence
queries alone). All investigations are purely information-theoretic and
ignore computational issues.

1 Introduction

The exact learning model was introduced by Angluin in [1]. In this model, a
learner A tries to identify an unknown target concept C (of the form C, : X —
{0,1} for a finite set X) by means of queries that must be honestly answered
by an oracle. Although the oracle must not lie, it may select its answers in a
worstcase fashion such as to slow down the learning process as much as possible.
In the (worstcase) analysis of A, we assume that the oracle is indeed an adversary
of A that makes full use of this freedom. (In the sequel, we sometimes say
“adversary” instead of “oracle” for this reason.) Furthermore, A must be able to
identify any target concept selected from a (known) concept class C. Again, A is
subjected to a worstcase analysis, i.e., we count the number of queries needed to
identify the hardest concept from C (that is the concept that forces A to invest
a maximal number of queries).
Among the most popular query types are the following ones:

* This work has been supported in part by the ESPRIT Working Group in Neural and

Computational Learning II, NeuroCOLT?2, No. 27150. The author was also supported
by the Deutsche Forschungsgemeinschaft Grant SI 498/4-1.



Equivalence Queries A selects a hypothesis H from its hypothesis class H.
(Typically, H = C or H is a superset of C.) If H = C,, the oracle an-
swers “YES” (signifying that A suceeded to identify the target concept).
Otherwise, the oracle returns a counterexample, i.e., an x € X such that
H(z) # Cu(z).

Membership Queries A selects an z € X and receives label C.(z) from the
oracle.

At each time of the learning process, the so-called version space V contains all
concepts from C that do not contradict to the answers that have been received so
far. Clearly, the learner succeeded to identify C, as soon as V = {C.}. It is well-
known in the learning community that the task of identifying an unknown but
fixed target concept from C is equivalent to the task of playing against another
adversary who need not to commit itself to a target concept in the beginning.
The answers of this adversary are considered as honest as long as they do not
lead to an empty version space. The learner still tries to shrink the version space
to a singleton and thereby to issue as few queries as possible. We will refer to
this task as the “contraction task” (or the “contraction game”). At first glance,
the contraction task seems to give more power to the adversary. However, if we
assume that A is deterministic, both tasks require the same number of queries:
since A is deterministic, one can “predict” which concept C, will form the final
(singleton) version space in the hardest scenario of the contraction task. Now, it
does not hurt the adversary, to commit itself to C, as the target concept in the
beginning.

Since randomized learning complexity will be an issue in this paper, we briefly
illustrate that the initial commitment to a target concept is relevant when we
allow randomized learners:

Ezample 1. Consider the model of learning by means of equivalence queries. Let
the concept and hypothesis class coincide with the set of all functions from X
to {0,1}, where X = {1,...,d}. Clearly, the contraction task forces each deter-
ministic (or randomized) algorithm to issue d equivalence queries because each
(non-redundant) query halves the version space. As for deterministic algorithms,
the same remark is valid for the learning task. However the following randomized
learning algorithm needs in the average only d/2 queries:

Pick a first hypothesis Hg : X — {0,1} uniformly at random. Given that the
current hypothesis is H and that counterexample z € X is received, let the next
hypothesis H' coincide with H on X \ {z} and set H'(z) 21-H (z).

The number of queries needed to identify an arbitrary (but fixed) target concept
C. equals the number of instances on which C, and Hy disagree. This is d/2 in
the average.

This example demonstrates that the typical adversary arguments, that are used
in the literature for proving lower bounds on the number of queries, do not
readily apply to randomized learners.}

! To the best of our knowledge, almost all papers devoted to query learning assume
deterministic learning algorithms. A notable exception is the paper [5] of Maass that



The main issue in this paper is the number of queries needed to halve (as
opposed to contract) an initial version space V. There are several reasons for
this kind of research:

— Contraction of the version space by iterated halving is considered as very
efficient. Iterated halving is an important building stone of well known strate-
gies such as the “Majority Vote Strategy”, for instance. The binary search
paradigm is based on halving. Halving may therefore be considered as an
interesting problem in its own right.

— Halving the version space yields exactly one bit of information. In this sense,
we explore the hardness to extract one bit of information from the learning
environment. This sounds like an elementary and natural problem.

— Although the contraction task is not meaningful for randomized learners,
we will be able to show that the halving task is meaningful. This makes
adversary arguments applicable to randomized learning algorithms.

— We can characterize the halving complexity for two popular query types
(equivalence and membership queries) by tight combinatorial bounds (leav-
ing almost no gap).2 These bounds can be used to characterize the additional
power provided by membership queries (compared to the power of equiva-
lence queries alone).

The paper is organized as follows. In Section 2, we present the basic defini-
tions and notations. In Section 3, we view the tasks of learning, contraction and
halving as a game between the learner (contraction algorithm, halving algorithm,
respectively) and an adversary. In Section 4, we investigate the relation between
halving and learning complexity (including randomized learning complexity). In
Section 5, we present the combinatorial (lower and upper) bounds on the halving
complexity. In Section 6, these bounds are used to characterize the additional
power provided by membership queries (compared to the power of equivalence
queries alone).

2 Basic Definitions and Notations

Let X be a finite set and C,H be two families of functions from X to {0,1}.
In the sequel, we refer to X as the instance space, to C as the concept class,
and to H as the hypothesis class. It is assumed that C C H. A labeled instance
(z,b) € X x {0,1} is called a sample-point. A sample is a collection of sample-
points. For convenience, we represent each sample S as a partially defined binary

demonstrates the significance of supporting examples in the on-line learning model,
when the learner is randomized and the learning environment is oblivious.

? The derivation of these bounds is based on ideas and results from [4, 2], where bounds
on the number of queries needed for learning (i.e, for contracting the version space)
are presented. These bounds, however, leave a gap. It seems that the most accurate
combinatorial bounds are found on the level of the halving task. (See also [3] for a
survey on papers presenting upper and lower bounds on query complexity.)
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function over domain X. More formally, S is of the form S : X — {0,1,7}, where
S(z) =? indicates that S is undefined on instance z. The set

supp(S) £ {z € X : S(z) #7} (1)

is called the support of S. Note that a concept or hypothesis can be viewed as a
sample with full support. The size of S is the number of instances in its support.
S’ is called subsample of S, denoted as S’ C S, if supp(S’) C supp(S) and
S'(z) = S(z) for each instance z € supp(S’). We say that sample S and concept
C are consistent if S C C. We say that S has a consistent ezplanation in C if
there exists a concept C € C such that S and C are consistent. The terminology
for hypotheses is analogous.

In the exact learning model, a learner (learning algorithm) A has to identify
an unknown target concept C, € C by means of queries. The query learning
process can be informally described as follows. Each query must be honestly
answered by an oracle. Learning proceeds in rounds. In each round, A issues the
next query and obtains an honest answer from the oracle. The current version
space V is the set of concepts from C that do not contradict to the answers
received so far. Initially, V = C. From round to round, V shrinks. However, at
least the target concept C, always belongs to V because the answers given by
the oracle are honest. The learning process stops when V = {C.}.

For the sake of simplicity, we formalize this general framework only for the
following popular models of exact learning:

Equivalence Query Learning (EQ-Learning) Each allowed query can be
identified with a hypothesis H € H. If H = C., the only honest answer is
“YES” (signifying that the target concept has been exactly identified by A).
Otherwise, an honest answer is a counterezample to H, i.e., an instance «
such that H(z) # C.(z).

Membership Query Learning (MQ-Learning) Each allowed query can be
identified with an instance z € X. The only honest answer is C.(z).

EQ-MQ-Learning The learner may issue both types of queries.

Let V be the current version space. If A issues a membership query with instance
z and receives the binary label b, then the subsequent version space is given by

V[z,b] £ {C € V:C(z) = b}. (2)

Similarly, if A issues an equivalence query with hypothesis H and receives the
counterexample z, then the subsequent version space is given by

V[H,z] £ {C € V:C(z) # H(z)}. (3)

Clearly, answer “YES” to an equivalence query immediately leads to the final
version space {C.}.

In general, V[Q, R] denotes the version space resulting from the current ver-
sion space V when A issues query ) and receives answer R. We denote by Q



the set of queries from which @ must be selected. Given C,H, a collection Q
of allowed queries, and a deterministic learner A, we define DLC,?(C ,H) as the
following unique number gq:

— There exists a target concept C, € C and a sequence of honest answers to
the queries selected by A such that the learning process does not stop before
round q.

— For each target concept C, € C and each sequence of honest answers to the
queries selected by A, the learning process stops after round g or earlier.

In other words, DLCf(C ,H) is the smallest number g of queries such that A is
guaranteed to identify any target concept from C with hypotheses from H using
q queries from Q. The deterministic learning complezity associated with C,H, Q
is given by

DLCC(C,H) & min DLCZ(C, H), (4)

where A varies over all deterministic learners.

3 Games Related to Learning

Since we measure the number of queries needed by the learner in a worstcase
fashion, we can model the learning process as a game between two players:
the learner A and its adversary ADV. We use the notation ADV 4 to indicate
the strongest possible adversary of A. We begin with a rather straightforward
interpretation of exact learning as a game.

3.1 The Learning Game

C,H and Q are fixed and known to both players. The game proceeds as follows.
In a first move (invisible to A), ADV picks the target concept C. from C. After-
wards, both players proceed in rounds. In each round, first player A makes its
move by selecting a query from Q. Then, ADV makes its move by selecting an
honest answer. The game is over when the current version space does not con-
tain any concept different from C.. The goal of A is to finish the game as soon
as possible, whereas the goal of ADV is to continue playing as long as possible.
A is evaluated against the strongest adversary ADV 4 that forces A to make a
maximum number of moves (or the maximum expected number of moves in the
case of a randomized learner).

It should be evident that the number of rounds in the learning game between
a deterministic learner A and ADV 4 coincides with the quantity DLCS(C, )
that was defined in the previous section. Thus, DLC?(C,H) coincides with the
number of rounds in the learning game between the best deterministic learner
and its adversary.

We define RLC$(C,H) as the expected number of rounds in the learning
game between the (potentially) randomized learner A and its strongest adversary



ADV 4.3 The randomized learning complezity associated with C,H, Q is given by
RLCC(C,H) £ min RLCS(C, H), (5)

where A varies over all (potentially) randomized learners.

3.2 The Contraction Game

It is well known that, in the case of deterministic learners A, the learning game
can be replaced by a conceptually simpler game, differing from the learning game
as follows:

— The first move of ADV is omitted, i.e., ADV makes no commitment about
the target concept in the beginning.

— Each (syntactically correct)? answer that does not lead to an empty version
space is honest.

— The game is over when the version space is a singleton.

Again, the goal of player A is to finish the game as soon as possible, whereas the
goal of the adversary is to finish as late as possible. A is evaluated against its
strongest adversary ADV 4. We will refer to this new game as the contraction
game and to A as a contraction algorithm.

The following lemmas recall some well known facts (in a slightly more general
setting).

Lemma 1. As for the contraction game, there exist two deterministic optimal
players A, and ADYV,, i.e., the following holds:

1. Let A be any (potentially randomized) contraction algorithm. Then, ADV,
forces A to make at least as many moves as A..

2. Let ADV be any (potentially randomized) oracle. Then A. needs no more
moves against ADV than against ADV,.

The proof uses a standard argument which is given here for sake of completeness.

Proof. Consider the decision tree T' that models the moves of both players.
Each node of T is of type either Q or R (signifying which player makes the next
move). Each node of type Q is marked by a version space (reflecting the actual
configuration of the contraction game), and each node of type R is marked by
a version space and a question (again reflecting the actual configuration of the
game including the last question of A). The structure of T' can be inductively
described as follows:

3 Here, ADV 4 knows the program of A, but A determines its next move by means
of secret random bits. Thus, ADV 4 knows the probability distribution of the future
moves, but cannot exactly predict them. This corresponds to what is called “weakly
oblivious environment” in [5].

4 E.g., the answer to an equivalence (or membership) query must be an instance from
X (or a binary label, respectively).



— Its root is of type Q and marked C (the initial version space in the contraction
game).

— A node of type Q that is marked by a singleton (version space of size 1) is
a leaf (signifying that the game is over).

— Each inner node v of type Q that is marked V has k children v[Q4], . .., v[Qx],
where Q1,...,Qk denote the non-redundant questions that A is allowed to
issue at this stage. Node v[Q;] is of type R and marked (V, Q;).

— Each inner node w of type R that is marked (V, Q) has [ children w[R,],...,
w([Ry], where Ry, ..., R; denote the honest answers of ADV to question Q at
this stage. Node w[R;] is of type Q and marked V[Q, R;] (the version space
resulting from V when A issues query @ and receives answer R;).

It is easy to describe deterministic optimal strategies for both players in a
bottom-up fashion. At each node of T, the optimal decisions for A and ADV
result from the following rules:

— Each leaf is labeled 0 (signifying that no more moves of A are needed to
finish the game).

— If a node w of type R that is labeled (V, Q) has children w[R,],...,w[R] la-
beled (ni,...,ny), respectively, and n; = max{ni,...,n;}, then w is labeled
n;. Furthermore, ADV should answer R; to question @, given that V is the
current version space.

— If a node v of type Q that is labeled V has children v[Q1], ..., v[Qk] labeled
(m1,...,mg), respectively, and m; = min{m;,...,my}, then v is labeled
1 + m;. Furthermore, A should ask question Q;, given that V is the current
version space.

Note that these rules can be made deterministic by resolving the ties in an
arbitrary deterministic fashion. It is easy to prove for each node v of T (by
induction on the height of v) that the following holds:

If v is marked V, then the rules specify two deterministic optimal players (in
the sense of Lemma 1) for the partial contraction game that starts with initial
version space V. The bottom-up label associated with v specifies the number of
rounds in this partial game when both player follow the rules.

The extrapolation of this claim to the root node of T' yields Lemma 1.

Lemma 1 implies that A, is the best contraction algorithm among all (possibly
randomized) algorithms. (Remember that each algorithm A is evaluated against
its strongest adversary ADV 4.) It implies also that ADV, is the strongest ad-
versary of A,.

Lemma 2. DLC2(C,H) coincides with the number of rounds, say q., in the
contraction game between A, and ADV,.

The proof of this lemma (given here for sake of completeness) is well known in
the learning community and is, in fact, the justification of the popular adversary
arguments within the derivation of lower bounds on the number of queries needed
by deterministic learners.



Proof. The contraction game coincides with the learning game, except for the
commitment that the adversary has to make in the first step of the learning
game: the selection of a target concept C, € C. Thus, DLC2(C,H) < ¢*. It
suffices therefore to show that for each deterministic learner A there exists an
adversary ADV 4 that forces at least g. moves of A.

To this end, let A be an arbitrary, but fixed, deterministic learner. Let ADV,
be the optimal deterministic adversary in the contraction game that was de-
scribed in the proof of Lemma 1. Let A play against ADV, in the contraction
game.® Let ¢ > q. be the number of queries needed by A to finish the contrac-
tion game against player ADV,, and let C, be the unique concept in the final
(singleton) version space. Now we may use an adversary ADV 4 in the learning
game that selects C, as a target concept in the beginning and then simulates
ADV.,. Since A is deterministic, this will lead to the same sequence of moves as
in the contraction game. Thus, ADV can force ¢ > ¢* moves of A.

Note that a lower bound argument can deal with a sub-optimal (but, may be,
easier to analyze) adversary ADV (instead of ADV,). Symmetrically, an up-
per bound argument may use a sub-optimal (but, may be, easier to analyze)
contraction algorithm A (instead of A.).

We briefly remind the reader to Example 1. If C contains all functions from
{1,...,d} to {0,1}, then Example 1 shows that

DLCEQ(¢,C) = d and RLCEQ(C,C) < d/2.

In the light of Lemmas 1 and 2, this demonstrates that the contraction game
does not model the learning game when randomized learners are allowed.

3.3 The Halving Game

The halving game is defined like the contraction game except that it may start
with an arbitrary initial version space Vp C C (known to both players), and it is
over as soon as the current version space V contains at most half of the concepts
of Vo. Player A (called halving algorithm in this context) tries to halve Vy as
fast as possible. Player ADV 4 is its strongest adversary.

Like in the contraction game, there exist two optimal deterministic players:
A, (representing the optimal halving algorithm) and ADV, (wich is also the
strongest adversary for A,). (Compare with Lemma 1.) Let HC?(Vy,H) be
defined as the number of rounds in the halving game between A, and ADV,.
In other words, HCQ(VO,'H) is the smallest number of queries that suffices to
halve the initial version space V, when all queries are answered in a worstcase
fashion. This parameter has the disadvantage of being not monotonic: a subset
of Vo might be harder to halve than Vj itself. In order to force monotonicity, we
define the halving complexity associated with C,H, Q as follows:

HCE(C,H) = max{HC®(V,H) : V C C} (6)

5 This looks like a dirty trick because A is an algorithm that expects to play the learn-
ing game. We will however argue later that A cannot distinguish the communication
with ADV. from the communication with an adversary ADV in the learning game.



