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FOREWORD TO THE FIRST ENGLISH EDITION

The ideas and methods of set theory and topology penetrate
modern mathematics. It is no wonder then that the elements of
these two mathematical disciplines are now an indispensable
part of basic mathematical training. Concepts such as the union
and intersection of sets, countability, closed set, gnetric space, and
homeomorphic mapping are now classical notions in the whole
framework of mathematics.

The purpose of the present volume is to give an accessible
presentation of the fundamental concepts of set theory and topo-
logy; special emphasis being placed on presenting the material
from the viewpoint of its applicability to analysis, geometry, and
other branches of mathematics such as probability theory and
algebra. Consequently, results important for set theory and topo-
logy but not having close connections with other branches of
mathematics, are given a minor role or are omitted entirely. Such
topics are, for instance, investigations on foundations, the theory
of alephs, and the theory of curves.

The main body of the book is an introduction to set theory
and topology, intended for the beginner. Sections marked with
an asterisk cover either more complicated topics or points which
are frequently omitted in a first course; this holds also for some
exercises which allow the reader to get acquainted with many
applications and some important results which could not be
included in the text without unduly expanding it. Many new
exercises not contained in the Polish edition have been included
here.

I take great pleasure in thanking Professor J. Jaworowski and
Dr. A. Granas for their cooperation in preparing the Polish edition
and to thank also Professors A. Mostowski and R. Sikorski,
Dr. S. Mréwka, Mr. R. Engelking and Dr. A. Schinzel for nu-
merous comments which helped me to improve the original manu-

’ 11



12 FOREWORD TO THE FIRST ENGLISH EDITION

script. Also, my thanks go to Mr. Leo F. Boroni and to Mr. A.H.
Robinson for preparing the present text for English-speaking
students of mathematics.

KAziMIERZ KURATOWSKI

Warsaw
September 1960



FOREWORD TO THE SECOND ENGLISH
EDITION

Since the first English edition appeared, set theory and point-
set topology have developed to such an extent that the author
found it necessary to modify in many points the previous edition.
This was done partially in the Polish edition (1965) and in the
French edition (1966).

The most essential changes concern the second part of this
book (devoted to topology). However, there are also changes
worth noticing in the first part (on set theory).

The concepts of inverse limit, of lattice, of ideal, of filter, of
a commutative diagram, and of a cartesian product of an arbitrary
number of factors are considered. A slightly deeper insight into
the axioms of set theory was needed; in particular, the notion of
a class (in the sense of Bernays) is mentioned (and later applied,
mainly in connection with the concept of category used in the
Supplement).

In the theory. of ordering relations, more emphasis was put on
what was previously called partial ordering. This is now called,
more concisely, ordering, and this change of terminology seems
to be more appropriate to common use.

For the same reason, some notations have been changed. In
particular, the Lebesgue notation E,p(x) has been replaced by
{x: @(x)}; the union of members of a family A of sets is denoted
by U 4, and the intersection by () 4.

The changes in the second part of the book are more essential.
In the first edition, this part of the book was chiefly devoted to
the study of metric spaces. In this second edition, the general
topological spaces form its main subject. Consequently, more
than a half of the second part had to be written anew. It contains
new topics which were not considered in the first edition, such as
cartesian products of topological spaces, .the Cech-Stone com-

13



14 FOREWORD TO THE SECOND ENGLISH EDITION

pactification, quotient-spaces, completely regular spaces, quasi-
components, and a large number of exercises have been added.

In Chapter XX, on simplexes, more material will be found on
simplicial mappings, on the nerve of a cover and related problems.

Finally, the rather short Chapter XXI, on complexes, chains
and homologies, has been replaced by a much more extensive
Supplement on the elements of algebraic topology. This Supple-
ment, written by Professor Engelking, will certainly be a very
valuable complement to my book.

I have received considerable help from the persons mentioned
in the Foreword to the first edition and also from the young ladies
Dr. Karlowicz and Dr. Vuilleumier. To all of them go my heartiest
thanks.

KAziMIERZ KURATOWSKI

Warsaw
October 1968
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