



# Amino Acids in Human Nutrition and Health

Edited by

J.P.F. D'Mello

Formerly of SAC, University of Edinburgh King's Buildings Campus, Edinburgh, UK





#### CABI is a trading name of CAB International

CABI Nosworthy Way Wallingford Oxfordshire OX10 8DE UK CABI 875 Massachusetts Avenue 7th Floor Cambridge, MA 02139 USA

Tel: +44 (0)1491 832111 Fax: +44 (0)1491 833508 E-mail: cabi@cabi.org Website: www.cabi.org Tel: +1 617 395 4056 Fax: +1 617 354 6875 E-mail: cabi-nao@cabi.org

© CAB International 2012. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners.

A catalogue record for this book is available from the British Library, London, UK.

#### Library of Congress Cataloging-in-Publication Data

Amino acids in human nutrition and health / edited by J.P.F. D'Mello.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-84593-798-0 (alk. paper)

1. Amino acids in human nutrition. 2. Amino acids--Metabolism. I. D'Mello, J. P. Felix. II. C.A.B. International.

[DNLM: 1. Amino Acids--metabolism. 2. Amino Acids--therapeutic use. 3. Enzymes--metabolism. 4. Enzymes--therapeutic use. 5. Nutritional Physiological Phenomena. QU 60]

QP561.A4845 2011 612'.015756--dc22

2011010103

ISBN-13: 978 1 84593 798 0

Commissioning editor: Rachel Cutts Editorial assistant: Alexandra Lainsbury Production editor: Fiona Chippendale

Typeset by SPi, Pondicherry, India. Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY.

# Amino Acids in Human Nutrition and Health



## **Contributors**

- Alonso, F.J., Departamento de Biología Molecular y Bioquímica, Laboratorio de Química de Proteínas, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España. E-mail: fcarrion@uma.es
- Ambrée, O., Department of Psychiatry, University of Münster, Albert-Schweitzer-Str. 11, 48149 Munster, Germany. E-mail: ambree@uni-muenster.de
- Ando, T., AminoIndex Department, Ajinomoto Co., Inc., 1-15-1 Chuo-ku, Tokyo 104-8315, Japan. E-mail: toshihiko\_ando@ajinomoto.com
- Andrade-Talavera, Y., Laboratorio de Neurociencia Celular y Plasticidad, Universidad Pablo de Olavide, Sevilla, España. E-mail: yandtal@upo.es
- Averous, J., Unité de Nutrition Humaine, Institut National de la Recherche Agronomique de Theix, 63122 Saint Genès Champanelle, France. E-mail: julien.averous@clermont.inra.fr
- Ball, R.O., Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada, and Department of Nutritional Sciences, University of Toronto, Toronto, ON, M5S 2Z9, Canada. E-mail: ron.ball@ualberta.ca
- Bello, S.A., Laboratorio de Neurociencia Celular y Plasticidad, Universidad Pablo de Olavide, Sevilla, España. E-mail: sabina.bello@gmail.com
- Bengmark, S., Division of Surgery and Interventional Science, University College London, 4th floor, 74 Huntley Street, London WC1E 6AU, UK. E-mail: stig@bengmark.se
- **Bruhat**, A., Unité de Nutrition Humaine, Institut National de la Recherche Agronomique de Theix, 63122 Saint Genès Champanelle, France. E-mail: alainbruhat@clermont.inra.fr
- Caldwell, R.B., Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA. E-mail: rcaldwel@georgiahealth.edu
- Caldwell, R.W., Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA. E-mail: wcaldwel@mail.mcg.edu
- Carraro, V., Unité de Nutrition Humaine, Institut National de la Recherche Agronomique de Theix, 63122 Saint Gènes Champanelle, France. E-mail: valerie.carraro@clermont.inra.fr
- Carrión, M., Laboratorio de Neurociencia Celular y Plasticidad, Universidad Pablo de Olavide, Sevilla, España. E-mail: mcarrei@upo.es
- Chandra, S., Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA. E-mail: surabhic@email.arizona.edu
- Chaveroux, C., Unité de Nutrition Humaine, Institut National de la Recherche Agronomique de Theix, 63122 Saint Genès Champanelle, France. E-mail: cedric.chaveroux@mail.mcgill.ca

- Churchward-Venne, T.A., Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada. E-mail: churchta@mcmaster.ca
- **Conway, M.E.,** University of the West of England, Coldharbour Lane, Bristol, BS16 1UR, UK. E-mail: Myra.Conway@uwe.ac.uk
- **Dejong, C.H.C.,** Department of Surgery, Maastricht University Medical Centre, P.O. Box 6202, AZ Maastricht, the Netherlands. E-mail: chc.dejong@maastrichtuniversity.nl
- Dere, E., Université Paris VI: Université Pierre et Marie Curie, UFR des Sciences de la Vie (927), UMR 7102, Neurobiologie des Processus Adaptatifs Bâtiment B (étage 4), Boite 14, 9 quai St Bernard, 75005, Paris, France. E-mail: ekrem.dere@snv.jussieu.fr
- D'Mello, J.P.F., Formerly of SAC, University of Edinburgh King's Buildings Campus, West Mains Road, Edinburgh EH9 3JG, UK. E-mail: jpfdmello@hotmail.co.uk
- Elango, R., Child & Family Research Institute, BC Children's Hospital, Vancouver, BC, V5Z 4H4, Canada, and Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada. E-mail: relango@cfri.ubc.ca
- Fafournoux, P., Unité de Nutrition Humaine, Institut National de la Recherche Agronomique de Theix, 63122 Saint Genès Champanelle, France. E-mail: pierre.fafournoux@clermont.inra.fr
- Flores, G., Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, México. E-mail: gonzaloflores56@gmail.com
- Ganapathy, V., Vision Discovery Institute, and Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1120 Fifteenth Street, CB 2820, Augusta, GA 30912-2000, USA. E-mail: vganapat@georgiahealth.edu
- Ha, Y., Department of Cellular Biology and Anatomy, and Vision Discovery Institute, Medical College of Georgia, 1120 Fifteenth Street, CB 2820, Augusta, GA 30912-2000, USA. E-mail: yha@georgiahealth.edu
- Haavik, J., Department of Biomedicine, University of Bergen, Bergen, Norway. E-mail: Jan. Haavik@abm.uib.no
- Hankard, R., Pédiatrie Multidisciplinaire-Nutrition de l'Enfant, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers Cedex, France. E-mail: regis.hankard@free.fr
- Hawkins, R.A., Department of Physiology & Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064-3095 USA. E-mail: RAH@post.harvard.edu
- Imaizumi, A., Research Institute for Innovation, Ajinomoto Co., Inc., 1-15-1 Chuo-ku, Tokyo 104-8315, Japan. E-mail: akira\_imaizumi@ajinomoto.com
- Inoue, Y., Laboratory of Applied Microbiology and Biochemistry, Nara Women's University, Nara 630-8506, Japan. E-mail: inoue\_1708@yahoo.co.jp
- Jousse, C., Unité de Nutrition Humaine, Institut National de la Recherche Agronomique de Theix, 63122 Saint Genès Champanelle, France. E-mail: celine.jousse@clermont.inra.fr
- Kelm, M., Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Moorenstrasse 5, D-40225, Düsseldorf, Germany. E-mail: Malte.kelm@med.uni-duesseldorf.de
- **Kimura, T.**, R + D Planning Department, Ajinomoto Co., Inc., 1-15-1 Chuo-ku, Tokyo 104-8315, Japan. E-mail: takeshi\_kimura@ajinomoto.com
- Kirik, D., Brain Repair and Imaging in Neural Systems (BRAINS), Section of Neuroscience, Department of Experimental Medical Science BMC D11, Lund University, 221 84 Lund, Sweden. E-mail: Deniz.Kirik@med.lu.se
- Koch, R., Department of Pediatrics, Genetics Division, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA. E-mail: drpku@sbcglobal.net
- **Kurpad, A.V.**, Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore 560034, India. E-mail: a.kurpad@sjri.res.in
- Lambert-Langlais, S., Unité de Nutrition Humaine, Institut National de la Recherche Agronomique de Theix, 63122 Saint Genès Champanelle, France. E-mail: sarah.langlais@clermont.inra.fr

Contributors xxi

- **Levesque**, C.L., Department of Animal and Poultry Science, 70 Stone Road, Guelph, ON, N1G 2W1, Canada. E-mail: crystal.levesque@uoguelph.ca
- Li, X., GPCR Biology, Senomyx Inc., 4767 Nexus Centre Dr., San Diego, CA 92121, USA. E-mail: xiaodong.li@senomyx.com
- Lu, S.C., Division of Gastroenterology and Liver Disease, Keck School of Medicine, USC, Los Angeles, California 90033, USA. E-mail: shellylu@usc.edu
- Luedike, P., Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Moorenstrasse 5, D-40225, Düsseldorf, Germany. E-mail: Peter.luedike@med.uni-duesseldorf.de
- Márquez, J., Departamento de Biología Molecular y Bioquímica, Laboratorio de Química de Proteínas, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España. E-mail: marquez@uma.es
- Martínez-Chantar, M.L., CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, 48160 Derio, Bizkaia, España. E-mail: mlmartinez@cicbiogune.es
- Matés, J.M., Departamento de Biología Molecular y Bioquímica, Laboratorio de Química de Proteínas, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España. E-mail: jmates@uma.es
- Mato, J.M., CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, 48160 Derio, Bizkaia, España. E-mail: director@cicbiogune.es
- Matsukawa, S., Laboratory of Applied Microbiology and Biochemistry, Nara Women's University, Nara 630-8506, Japan. E-mail: satoko.matsukawa@shionogi.co.jp
- Maurin, A-C., Unité de Nutrition Humaine, Institut National de la Recherche Agronomique de Theix, 63122 Saint Genès Champanelle, France. E-mail: anne-catherine.maurin@clermont.inra.fr
- **McKinney**, **J.**, Department of Biomedicine, University of Bergen, Bergen, Norway. E-mail: Jeffrey.Mckinney@biomed.uib.no
- Mok, E., Pédiatrie Multidisciplinaire-Nutrition de l'Enfant, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers Cedex, France. E-mail: elise.mok@muhc. mcgill.ca
- Mokashi, A., Department of Physiology & Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064-3095, USA. E-mail: ashwini.mokashi@rosalindfranklin.edu
- Moseley, K., Department of Pediatrics, Genetics Division, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA. E-mail: kmoseley@usc.edu
- Moughan, P.J., Riddet Institute, Massey University, Tennent Drive, Private Bag 11-222, Palmerston North, New Zealand. E-mail: p.j.moughan@massey.ac.nz
- Nakamura, Y., Laboratory of Applied Microbiology and Biochemistry, Nara Women's University, Nara 630-8506, Japan. E-mail: nakamuray@missouri.edu
- Negrete-Díaz, J.V., Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, México, and Laboratorio de Neurociencia Celular y Plasticidad, Universidad Pablo de Olavide, Sevilla, España. E-mail: vicentemozart@yahoo.com
- Noguchi, Y., Research Institute for Innovation, Ajinomoto Co., Inc., 1-15-1 Chuo-ku, Tokyo 104-8315, Japan. E-mail: yasushi\_noguchi@ajinomoto.com
- O'Kane, R., Natural and Applied Science Department, La Guardia Community College/CUNY, 31-10 Thomson Ave., Long Island City, NY 11101, USA. E-mail: Robyn.okane@colostate.edu
- Parry, L., Unité de Nutrition Humaine, Institut National de la Recherche Agronomique de Theix, 63122 Saint Genès Champanelle, France. E-mail: laurent.parry@clermont.inra.fr
- Peterson, D.R., Department of Physiology & Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064-3095 USA. E-mail: darryl.peterson@rosalindfranklin.edu
- Phillips, S.M., Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada. E-mail: phillis@ mcmaster.ca

xxii Contributors

- Pillai, R.R., Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore 560034, India. E-mail: ramaswamy.pillai@gmail.com
- Rassaf, T., Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Moorenstrasse 5, D-40225, Düsseldorf, Germany. E-mail: Tienush.Rassaf@med.uni-duesseldorf.de
- Rodríguez-Moreno, A., Laboratorio de Neurociencia Celular y Plasticidad, Universidad Pablo de Olavide, Sevilla, España. E-mail: arodmor@upo.es
- Sahin, G., Brain Repair and Imaging in Neural Systems (BRAINS), Section of Neuroscience, Department of Experimental Medical Science BMC D11, Lund University, 221 84 Lund, Sweden. E-mail: Gurdal.Sahin@med.lu.se
- Segura, J.A., Departamento de Biología Molecular y Bioquímica, Laboratorio de Química de Proteínas, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España. E-mail: jsegura@uma.es
- Sihra, T.S., Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK. E-mail: t.sihra@ucl.ac.uk
- Simpson, I.A., Department of Neural and Behavioral Sciences, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.E-mail: IXS10@psu.edu
- Smith, S.B., Department of Cellular Biology and Anatomy, Department of Ophthalmology, and Vision Discovery Institute, Medical College of Georgia, 1120 Fifteenth Street, CB 2820, Augusta, GA 30912-2000, USA. E-mail: sbsmith@georgiahealth.edu
- Smith, T.J., Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO 63132, USA. E-mail: TSmith@danforthcenter.org
- Stanley, C.A., Division of Endocrinology, The Children's Hospital of Philadelphia, 34th Street and Civic Center Blvd., Philadelphia, PA 19104, USA. E-mail: stanleyc@email.chop.edu
- Steffen, B., Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55454, USA. E-mail: steff293@umn.edu
- Steffen, L.M., Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55454, USA. E-mail: steffen@umn.edu
- Takahashi, M., Research Institute for Innovation, Ajinomoto Co., Inc., 1-15-1 Chuo-ku, Tokyo 104-8315, Japan. E-mail: mitsuo\_takahashi@ajinomoto.com
- **Ueno, H.**, Laboratory of Applied Microbiology and Biochemistry, Nara Women's University, Nara 630-8506, Japan. E-mail: hueno@cc.nara-wu.ac.jp
- van de Poll, M.C.G., Department of Surgery, Maastricht University Medical Centre, P.O. Box 6202, AZ Maastricht, the Netherlands. E-mail: mcg.vandepoll@ah.unimaas.nl
- Viña, J.R., Departamento de Bioquímica & Biología Molecular, Facultad de Medicina/Fundacíon de Investigacíon Hospital Clinico-INCLIVA, Universidad de Valencia, Avenida Blasco Ibañez 17, Valencia, España 46010. E-mail: vinaj@uv.es
- West, D.W.D., Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada. E-mail: westd3@mcmaster.ca
- Winge, I., Department of Biomedicine, University of Bergen, Bergen, Norway. E-mail: ingeborg.winge@biomed.uib.no
- **Zepf, F.D.**, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany and JARA Translational Brain Medicine, Aachen + Jülich, Germany. E-mail: fzepf@ukaachen.de
- Zlomuzica, A., Department of Clinical Psychology, Ruhr-Universität Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany. E-mail: Armin. Zlomuzica@rub.de

### **Preface**

#### Rationale

Research interest in the biochemistry of amino acids continues apace, generating significant dividends for nutritional support and the elucidation of mechanisms underlying a variety of disorders in humans. The remarkable scale of recent developments has provided the impetus for publication of this first edition of *Amino Acids in Human Nutrition and Health*. It was deemed appropriate to formally acknowledge these advances within a comprehensive volume. The recruitment of authors with exceptional merit constituted an integral part of my strategy.

There appears to be a demand for a book which integrates recent advances relating to amino acids within the two disciplines of nutrition and health. Various symposia have been convened on certain aspects covered in this book, but the published proceedings are distributed in different issues of journals, thereby compromising convenience for consultation by students and research staff. It is an unfortunate reflection of our time that university libraries cannot afford to stock some of the primary journals that have, in the recent past, been judged to be essential reading for advanced students. The publication of *Amino Acids in Human Nutrition and Health* might be viewed as an attempt to rectify this deficiency. Furthermore, the symposia have focused on restricted themes, whereas this volume is designed to address a comprehensive range of issues. The reviews in published proceedings of symposia have also been restricted to a few pages per article, but there is a need for in-depth coverage to more appropriately reflect current developments.

This volume is designed for academic, research, and corporate establishments worldwide, particularly in Europe, the United States, Canada, Japan, and Australia, but generally in all countries where English is a primary medium for education and research. This book should appeal to final year undergraduate and graduate students as well as to research staff. It is anticipated that it will be recommended reading for courses in general and clinical biochemistry, medicine, nursing, human nutrition and food science. The text is also designed with the commercial sector in mind, particularly pharmaceutical companies with extensive R&D laboratories.

#### Overview

The chapters in Amino Acids in Human Nutrition and Health are arranged within a thematic structure as indicated in the sections below. The nature of the subject and the need for

xxiv Preface

interlinking chapters have meant that a limited amount of overlap was inevitable. This is not necessarily a detraction, as individual chapters are now self-contained to ensure continuity for readers, with cross-referencing kept to the minimum. This strategy has also allowed authors increased flexibility in terms of emphasis and interpretation.

#### Part I Enzymes and metabolism

This section pursues the theme of amino acid metabolism through the driving actions of the principal enzymes, emphasizing recent developments particularly with reference to localization, molecular genetics, biophysical characterization and regulation. Subsequent chapters will also demonstrate the changing facets of amino acid biochemistry. The competing actions of enzymes for critical substrates are also features of relevance in this section. A number of the enzymes under review here catalyse rate-limiting steps in important metabolic pathways, leading to synthesis of physiologically active intermediates and end products. There is scope for elaboration of the important pathways initiated by enzymes under review in this section. Part I has also been developed with the aim of underpinning subsequent chapters in this volume.

#### Part II Dynamics

This section deals with important issues relating to whole-body amino acid dynamics, with a particular objective of supporting the chapters on nutrition and health that will follow. In this chapter, authors were encouraged to adopt an integrative approach to include their own expertise and that of others in their respective fields. A basic outline of metabolic pathways appears in Part I. The theme in this section centres around kinetics and regulation in broad-spectrum reviews incorporating innovative aspects of the relevant research. In other words, the concept of metabolic networking forms an underlying theme in this series of chapters.

#### Part III Nutrition

Since the publication of *Mammalian Protein Metabolism* (Munro and Allison, 1964), there has been a steady but perceptible shift in focus towards individual or distinct groups of amino acids, and this change is most clearly seen in nutritional developments. The move away from protein to amino acid considerations is a deliberate theme in the development of the rationale for this section. However, even traditional issues, such as protein-energy malnutrition, are being investigated in the light of kinetics of specific amino acids, with reduced emphasis on whole-body protein dynamics. Against such a background, it was considered appropriate to secure reviews that would reflect a modernizing and progressive agenda in amino acid research.

The chapters cover a number of topical research investigations employing existing technologies to develop novel concepts or to underpin contemporary practices. Methods previously developed and validated with animal models are now being applied to human physiology and nutrition with significant results worthy of publication in this volume.

#### Part IV Health

The earlier sections have provided the biochemical basis of several of the conditions to be reviewed here. It is now clear that the metabolism of amino acids is associated with or

Preface xxv

modulated by a diverse array of disorders and, in certain instances, may provide markers for risk assessment. At least four of the chapters in this section will focus on different amino acids associated with neurological issues and cognitive performance measures. The approach here is designed to reflect developments in epidemiology, monitoring, and clinical interventions in the various conditions under consideration in this section.

#### **Part V Conclusions**

The final section contains a plenary review designed to summarize the main findings in the foregoing chapters within an integrated account. The main theme centres around the concept of the emergence of a new momentum driving forward a progressive agenda in further elucidating the biochemical and health implications of amino acids.

#### Acknowledgements

I am indebted to my team of distinguished authors who have made publication of this volume possible despite the constraints imposed by their normal schedules. Their cooperation in submitting manuscripts promptly has ensured that the book remains up-to-date and relevant in an ever-changing scenario. Their lucid chapters have inspired me to enquire further and to challenge existing hypotheses; I trust that my readers will be similarly motivated. I am heartened by responses I have received from a number of my authors. The following words of Professor Deniz Kirik (Chapter 26, with Professor Sahin) encapsulates these sentiments: 'It has been an interesting exercise for us to write this text as it provoked many interesting discussions in areas we thought we knew well but noticed gaps in our knowledge. We will follow on some of these points to inquire more and think that some of them could even become topics for experimentation in the next period. So it has been very valuable and pleasant for us as well.'

#### Disclaimer

This book necessarily contains references to commercial products. However, authors were asked to refrain from excessive usage of any trade names unless there were compelling reasons for doing so. No endorsement of these products is implied or should be attributed to the editor or to CAB International.

The information set out within *Amino Acids in Human Nutrition and Health* is presented in good faith and in accordance with 'best practice'. Although every effort has been made to verify the facts and figures, neither the editor nor CAB International can accept responsibility for the data presented in individual chapters or for any consequences of their use.

At the time of preparation, I was aware of articles in the popular press extolling the virtues of citrulline and the branched-chain amino acids in the context of health and longevity. However, the publication of this book should not be interpreted as a recommendation for individuals to use these or any other amino acids for whatever purpose. *Amino Acids in Human Nutrition and Health* is intended exclusively for use as a text in education and in R&D establishments.

J.P.F. D'Mello Editor

# **Glossary**

#### Introduction

Evaluation of issues underlying the role of amino acids in human nutrition and health inevitably entails an appreciation of specific nomenclature and technical descriptors. Although many of the terms and acronyms used are now in common usage outside scientific circles, it was deemed important to provide as comprehensive a list as possible to assist those readers who are new to this field. Further definitions are available in appropriate scientific dictionaries, for example in the compilations of Hodgson *et al.* (1998), Marcovitch (2005), Parish *et al.* (2006), Martin (2010) and the MedlinePlus (2010) website. Handbooks such as those by D'Mello (1997) and Longmore *et al.* (2010) and current textbooks in medical sciences (Bear *et al.*, 2007; Barker *et al.*, 2008; Baynes and Dominiczak, 2009; Naish *et al.*, 2009) are also recommended as sources of relevant information.

#### **Definition of Terms and Acronyms**

The important terms and acronyms are defined in Table 1. This compilation includes standard conventions as well as unique chapter-specific terms. Cross-referencing to individual chapters in this volume is provided in order to permit a greater appreciation of the context of usage of selected terms.

Table 1. Explanation of relevant terms and acronyms used in Amino Acids in Human Nutrition and Health.

| Abbreviation or Term | Definition                                                                                                       |
|----------------------|------------------------------------------------------------------------------------------------------------------|
| AA                   | amino acid(s)                                                                                                    |
| AAA                  | aromatic amino acid(s)                                                                                           |
| AAAH                 | aromatic amino acid hydroxylase (Chapter 9)                                                                      |
| AADC                 | aromatic amino acid decarboxylase (Chapters 9 and 26)                                                            |
| AARE                 | amino acid regulatory element (Chapter 13)                                                                       |
| Ac-CoA               | acetyl coenzyme A                                                                                                |
| Acute toxicity       | severe adverse effects occurring within a relatively short period of exposure to a potentially harmful substance |

Continued

xxviii Glossary

#### Table 1. Continued.

| Abbreviation or Term | Definition                                                                                                       |
|----------------------|------------------------------------------------------------------------------------------------------------------|
| AD                   | Alzheimer's disease (Chapters 21, 22, 25, and 28)                                                                |
| Adduct               | covalent product of a compound or metabolite to large biomolecules such                                          |
|                      | as proteins and DNA (Chapter 28)                                                                                 |
| ADHD                 | attention deficit hyperactivity disorder (Chapter 9)                                                             |
| ADI                  | acceptable daily intake(s)                                                                                       |
| ADMA                 | asymmetrical dimethylarginine (Chapter 4)                                                                        |
| ADP                  | adenosine diphosphate (Chapter 1)                                                                                |
| AGE                  | advanced glycation end-product(s) (Chapters 19, 22, and 28)                                                      |
| Agonist              | a compound eliciting a biological response by interacting with specific cel<br>receptors, enzymes or metabolites |
| Akt                  | protein kinase B (Chapter 17)                                                                                    |
| ALE                  | advanced lipoxidation end-product(s) (Chapters 22 and 28)                                                        |
| Allosteric           | multi-site enzyme modulation of structure and activity (Chapter 10)                                              |
| ALP                  | alkaline phosphatase (Chapter 2)                                                                                 |
| ALS                  | amyotrophic lateral sclerosis (Chapter 25)                                                                       |
| ALS/PDC              | amyotrophic lateral sclerosis/Parkinsonism dementia complex (Chapter 19)                                         |
| ALT                  | alanine aminotransferase (Chapter 2)                                                                             |
| AMD                  | age-related macular degeneration (Chapter 22)                                                                    |
| Aminoacidergic       | relating to amino acids as neurotransmitters (Chapter 28)                                                        |
| AminoIndex           | amino acid profiles for diagnostic applications (Chapter 27)                                                     |
| AMP                  | adenosine monophosphate (Chapter 9)                                                                              |
| AMPA                 | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (Chapters 8, 25, and 28)                                    |
| AMPAR                | AMPA receptor (Chapter 25)                                                                                       |
| AMPK                 | AMP-activated protein kinase (Chapter 10)                                                                        |
| ANF                  | anti-nutritional factor(s) (Chapter 14)                                                                          |
| Antagonist           | a compound acting as an inhibitor by virtue of structural analogy with                                           |
| AOAA                 | nutrients or other intermediates (Chapter 19)                                                                    |
| APEX                 | aminooxyacetic acid (Chapter 2)                                                                                  |
| ARA                  | apurinic/apyrimidinic endonuclease (Chapter 10)                                                                  |
|                      | arachidonic acid (20:4n-6) (Chapter 23)                                                                          |
| Arg<br>ASNS          | arginine                                                                                                         |
| ASCT                 | asparagine synthetase (Chapter 13)                                                                               |
| Asn                  | alanine, serine, and cysteine transport system (Chapter 8)                                                       |
|                      | asparagine                                                                                                       |
| Asp<br>ASS           | aspartate                                                                                                        |
| AST                  | argininosuccinate synthase (Chapter 3)                                                                           |
| ATA                  | aspartate aminotransferase (Chapter 2)                                                                           |
| ATF                  | aurintricarboxylic acid (Chapter 1)                                                                              |
| ATP                  | activating transcription factor (Chapter 13)                                                                     |
| AUC                  | adenosine 5'-triphosphate (Chapters 1, 11, 20, and 28)                                                           |
| BBB                  | area under the curve (Chapter 27)                                                                                |
| BBMV                 | blood-brain barrier (Chapters 9 and 11)<br>brush border membrane vesicles                                        |
| BCAA                 |                                                                                                                  |
| BCAT                 | branched-chain amino acids (Chapters 2, 11, 16, 17, 19, and 28)                                                  |
| BCH                  | branched-chain aminotransferase (Chapters 2 and 28)                                                              |
| CKA                  | 2-aminobicyclo(2,2,1)-heptane-2-carboxylic acid (Chapter 11)                                                     |
| CKDH                 | branched-chain keto acids (Chapters 2 and 19)                                                                    |
| SH <sub>4</sub>      | branched-chain α-keto acid dehydrogenase (Chapter 2)                                                             |
| LMV                  | tetrahydrobiopterin (Chapters 4, 9, and 23)                                                                      |
| MAA                  | basolateral membrane vesicles $\beta$ - $N$ -methylamino-L-alanine (Chapter 19)                                  |
| MI                   | p-ry-metry annio-L-alanine (Chapter 19)                                                                          |

Glossary xxix

Table 1. Continued.

| Abbreviation or Term | Definition                                                                                                                       |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------|
| BOAA                 | $\beta$ -N-oxalylamino-L-alanine (Chapter 19)                                                                                    |
| CAA                  | cationic amino acids (Chapter 11)                                                                                                |
| Carcinogenic         | causing cancer                                                                                                                   |
| CAT                  | cationic amino acid transport                                                                                                    |
| CBS                  | cystathionine β-synthase (Chapter 10)                                                                                            |
| cDNA                 | complementary DNA (Chapter 7)                                                                                                    |
| CEL                  | $N^{\epsilon}$ -(carboxyethyl) lysine (Chapter 22)                                                                               |
| cGMP                 | cyclic guanosine monophosphate                                                                                                   |
| ChAT                 | choline acetyltransferase (Chapter 8)                                                                                            |
| CHD                  | coronary heart disease (Chapter 21)                                                                                              |
| CHOP                 | C/EBP homologous protein (Chapter 13)                                                                                            |
| Chronic toxicity     | adverse effects resulting from prolonged and repeated exposure to relatively small quantities of a potentially harmful substance |
| Cit                  | citrulline                                                                                                                       |
| CML                  | $N^{\epsilon}$ -(carboxymethyl) lysine (Chapters 22 and 28)                                                                      |
| cNOS                 | constitutive nitric oxide synthase (Chapter 28)                                                                                  |
| CNS                  | central nervous system (Chapters 1, 7, 8, and 28)                                                                                |
| CoA                  | coenzyme A                                                                                                                       |
| COMT                 | catechol-O-methyltransferase (Chapter 26)                                                                                        |
| COPD                 | chronic obstructive pulmonary disease (Chapters 22 and 28)                                                                       |
| CPS                  | carbamoyl phosphate synthase (Chapter 3)                                                                                         |
| CPu                  | caudate-putamen (Chapter 25)                                                                                                     |
| CSA                  | cross-sectional area (of skeletal muscle fibre) (Chapter 17)                                                                     |
| CSF                  | cerebrospinal fluid (Chapter 11)                                                                                                 |
| CVD                  | cardiovascular disease (Chapter 21)                                                                                              |
| Cys                  | cysteine                                                                                                                         |
| d                    | day                                                                                                                              |
| DA                   | dopamine                                                                                                                         |
| DAA                  | dispensable amino acid(s) (see also NEAA) (Chapter 19)                                                                           |
| DAAB                 | direct amino acid balance (Chapter 16)                                                                                           |
| DAAO                 | direct measurement of amino acid oxidation (Chapter 16)                                                                          |
| DCAM                 | decarboxylated 5-adenosyl-methionine                                                                                             |
| DDC                  | DOPA decarboxylase (Chapter 6)                                                                                                   |
| DFMO                 | $\alpha$ -difluoromethylornithine (Chapter 3)                                                                                    |
| DHA                  | docosahexaenoic acid (22:6n-3) (Chapter 23)                                                                                      |
| DHF                  | dihydrofolate (Chapter 10)                                                                                                       |
| DMD                  | Duchenne muscular dystrophy (Chapter 18)                                                                                         |
| DMI                  | dry matter intake                                                                                                                |
| DMPH <sub>4</sub>    | 6,7-dimethyltetrahydropterin (Chapter 9)                                                                                         |
| DNA                  | deoxyribonucleic acid (Chapters 1, 5, 10, 19, and 28)                                                                            |
| DOPA                 | 3,4-dihdroxyphenylalanine (Chapters 26 and 28)                                                                                   |
| DOPAC                | 3,4-dihydroxyphenylacetate (Chapters 5, 6, and 26)                                                                               |
| dUMP                 | deoxyuridine monophosphate (Chapter 10)                                                                                          |
| EAA                  | essential amino acid(s) (see also IAA) (Chapter 17)                                                                              |
| EAAT                 | excitatory amino acid transport (Chapter 11)                                                                                     |
| EC                   | epicatechin (Chapter 1)                                                                                                          |
| ECF                  | extracellular fluid (Chapter 11)                                                                                                 |
| ECG                  | epicatechin gallate (Chapter 1)                                                                                                  |
| EDTA                 | ethylendiamine tetraacetic acid (Chapter 27)                                                                                     |
| EEG                  | electroencephalogram (Chapter 25)                                                                                                |
| eEPSC                | evoked excitatory postsynaptic current(s) (Chapter 25)                                                                           |
| EGC                  | epigallocatechin (Chapter 1)                                                                                                     |
| EGCG                 | epigallocatechin gallate (Chapters 1 and 22)                                                                                     |

xxx Glossary

Table 1. Continued.

| Abbreviation or Term | Definition                                                      |  |
|----------------------|-----------------------------------------------------------------|--|
| ELISA                | enzyme-linked immunosorbent assay (Chapter 6)                   |  |
| EMG                  | electromyography (Chapter 25)                                   |  |
| EOG                  | electrooculography (Chapter 25)                                 |  |
| EU                   | European Union                                                  |  |
| FA                   | fatty acid(s)                                                   |  |
| FAD                  | flavin adenine dinucleotide                                     |  |
| FAO                  | Food and Agriculture Organization (United Nations)              |  |
| FDA                  | Food and Drug Administration (USA)                              |  |
| fEPSP                | field excitatory postsynaptic potential(s) (Chapter 25)         |  |
| FMN                  | flavin mononucleotide (Chapter 4)                               |  |
| fMRI                 | functional magnetic resonance imaging (Chapter 20)              |  |
| Fol                  | folic acid (Chapter 21)                                         |  |
| FSR                  | fractional synthetic rate                                       |  |
| GA                   | glutaminase (Chapter 7)                                         |  |
| GAB                  | glutaminase B (Chapter 7)                                       |  |
| GABA                 | γamino butyrate (Chapters 1, 5, 6, 7, 25, and 28)               |  |
| GABAR                | GABA receptor (Chapter 25)                                      |  |
| GAC                  | glutaminase C (Chapter 7)                                       |  |
| GAD                  | glutamic acid decarboxylase (Chapters 6 and 28)                 |  |
| GCH                  | GTP cyclohydrolase (Chapter 26)                                 |  |
| GCN                  | general control non-derepressive (Chapter 13)                   |  |
| GDH                  | glutamate dehydrogenase (Chapter 1, 2, and 28)                  |  |
| GDS                  | gut-derived serotonin (Chapter 9)                               |  |
| GGT                  |                                                                 |  |
| GH                   | γ-glutamyl transpeptidase (Chapter 11)                          |  |
| Glc-6P               | growth hormone                                                  |  |
| Gln                  | glucose-6 phosphate<br>glutamine                                |  |
| Glu                  |                                                                 |  |
| Glutamatergic        | glutamate                                                       |  |
| Gly                  | relating to glutamate neurotransmission (Chapter 28)            |  |
| GMP                  | glycine                                                         |  |
| GNMT                 | guanosine-5'-monophosphate (Chapter 20)                         |  |
| GPCR                 | glycine N-methyltransferase (Chapter 10)                        |  |
| GS                   | G protein-coupled receptors (Chapter 20)                        |  |
| GSH                  | glutamine synthetase (2 and 28)                                 |  |
| GTP                  | glutathione (Chapter 10)                                        |  |
|                      | guanosine triphosphate (Chapters 1, 4, and 26)                  |  |
| h<br>NGC             | hour(s)                                                         |  |
| HCC                  | hepatocellular carcinoma (Chapter 10)                           |  |
| HCP                  | hexachlorophene (Chapter 1)                                     |  |
| Нсу                  | homocysteine (Chapter 21)                                       |  |
| HD                   | Huntington's disease (Chapter 25)                               |  |
| HDC                  | histidine decarboxylase (Chapters 6 and 28)                     |  |
| HDL                  | high density lipoproteins (Chapter 22)                          |  |
| Hepatotoxic          | toxic to the liver                                              |  |
| HHS                  | hyperinsulinism/hyperammonaemia syndrome (Chapter 1)            |  |
| His                  | histidine                                                       |  |
| HO2                  | haem-oxygenase-2                                                |  |
| HPLC                 | high-performance liquid chromatography (Chapter 26)             |  |
| HRI                  | haem-regulated translational inhibitor (Chapter 13)             |  |
| 5-HT                 | 5-hydroxytryptamine (serotonin) (Chapter 24)                    |  |
| HuR                  | human antigen R (Chapter 10)                                    |  |
| HVA                  | homovanillic acid (Chapter 26)                                  |  |
| nVps34               | human vacuolar protein sorting-34 (Chapter 17)                  |  |
| AA                   | indispensable amino acid(s) (see also EAA) (Chapters 16 and 19) |  |

*Glossary* xxxi

#### Table 1. Continued.

| Abbreviation or Term | Definition                                                                   |
|----------------------|------------------------------------------------------------------------------|
| IAAB                 | indicator amino acid balance (Chapter 16)                                    |
| IAAO                 | indicator amino acid oxidation (Chapters 15 and 16)                          |
| IGF-I                | insulin-like growth factor-I (Chapter 13)                                    |
| IGFBP-1              | insulin-like growth factor binding protein-1 (Chapter 13)                    |
| ILAE                 | International League Against Epilepsy (Chapter 25)                           |
| lle                  | isoleucine                                                                   |
| IMP                  | inosine-5'-monophosphate (inosinate) (Chapter 20)                            |
| inos                 | inducible nitric oxide synthase (Chapter 28)                                 |
| KA                   | kainate (Chapter 25)                                                         |
| KAR                  | kainate type glutamate receptor (Chapter 25)                                 |
| KGA                  | kidney GA (Chapter 7)                                                        |
| KO                   | knockout (Chapter 9)                                                         |
| LCMT                 | leucine carboxyl methyltransferase                                           |
| LCPUFA               | long-chain polyunsaturated fatty acids (Chapter 23)                          |
| LDH                  | lactate dehydrogenase                                                        |
| LDL                  | low-density lipoprotein(s) (Chapters 3 and 4)                                |
| LDR                  | long-duration response (Chapter 26)                                          |
| Leu                  | leucine                                                                      |
| LFT                  | liver function tests (Chapter 2)                                             |
| LGA                  | liver GA (Chapter 7)                                                         |
| LKB                  | liver kinase B (Chapter 10)                                                  |
| LNAA                 | large neutral amino acid(s) (Chapters 11, 23, and 24)                        |
| LTP                  | long-term potentation (Chapter 25)                                           |
| Lys                  | lysine                                                                       |
| MA                   | metabolic availability (Chapters 9 and 15)                                   |
| MAO                  | monoamine oxidase (Chapters 9 and 26)                                        |
| MAP4K3               | mitogen activated protein kinase-3 (Chapter 17)                              |
| MAT                  | methionine adenosyltransferase (Chapters 10 and 28)                          |
| MDH                  | malate dehydrogenase (Chapter 2)                                             |
| ME                   | malic enzyme (Chapter 2)                                                     |
| MeAIB                | N-(methylamino)-isobutyric acid (Chapter 11)                                 |
| Met                  | methionine                                                                   |
| mGluR                | metabotropic G protein-coupled glutamate receptor (Chapter 25)               |
| MMP                  | mitochondrial membrane potential (Chapter 7)                                 |
| Monoaminergic        | relating to neurotransmission by biogenic amines (Chapter 28)                |
| MPB                  | muscle protein breakdown (Chapter 17)                                        |
| MPS                  | muscle protein synthesis (Chapter 17)                                        |
| MPTP                 | 1, methyl-4-phenyl-1,2,3,6-tetrahydropyridine (Chapter 26)                   |
| $M_{\rm r}$          | relative molecular mass (Chapter 7)                                          |
| mRNA                 | messenger RNA                                                                |
| MSG                  | monosodium glutamate (Chapters 19, 20, and 28)                               |
| MSUD                 | maple syrup urine disease (Chapter 2)                                        |
| MT                   | methyltransferases (Chapter 10)                                              |
| MTHFR                | methylene-tetrahydrofolate reductase (Chapter 21)                            |
| mTOR                 | mammalian target of rapamycin (Chapters 10, 13, 17, and 28)                  |
| Mutagenic            | causing mutations                                                            |
| N                    | nitrogen                                                                     |
| NAA                  | neutral amino acids (Chapter 11)                                             |
| NACC                 | nucleus accumbens (Chapter 25)                                               |
| NAD+                 | nicotinamide adenine dinucleotide (oxidized) (Chapter 1)                     |
| NADP+                | nicotinamide adenine dinucleotide phosphate (oxidized) (Chapter 1)           |
| NADPH                | nicotinamide adenine dinucleotide phosphate (reduced) (Chapters 1, 3, and 4) |
| NAFLD                | non-alcoholic fatty liver disease (Chapters 2, 10, and 22)                   |

xxxii Glossary

Table 1. Continued.

| Abbreviation or Term | Definition                                                            |
|----------------------|-----------------------------------------------------------------------|
| NASH                 | non-alcoholic steatohepatitis (Chapters 10 and 22)                    |
| NCHS                 | National Center for Health Statistics (USA) (Chapter 23)              |
| NDF                  | neutral detergent fibre (Chapter 14)                                  |
| NEAA                 | non-essential amino acid(s)                                           |
| Nephrotoxic          | toxic to the kidney                                                   |
| NIH                  | National Institutes of Health                                         |
| NMDA                 | N-methyl D-aspartate (Chapters 8, 25, and 28)                         |
| NMDAR                | NMDA receptor(s) (Chapters 8 and 25)                                  |
| NMMA                 | N <sup>G</sup> -monomethyl arginine (Chapter 4)                       |
| NO                   | nitric oxide (Chapters 3, 4, 11, 12, 19, and 28)                      |
| NOHA                 | N <sup>∞</sup> -hydroxy-L-arginine (Chapter 3)                        |
| nor-NOHA             | N®-hydroxy-nor-L-arginine (Chapter 3)                                 |
| NOS                  | nitric oxide synthase (Chapters 3, 4, 11, 12, 19, and 28)             |
| NPB                  | net protein balance (Chapter 17)                                      |
| NRC                  | National Research Council (USA)                                       |
| NSRE                 | nutrient-sensing response element (Chapter 13)                        |
| NTD                  | neural tube defects (Chapter 21)                                      |
| OAA                  | oxaloacetate (Chapters 2 and 7)                                       |
| OAAL                 | obligatory amino acid loss (Chapter 16)                               |
| OAT                  | ornithine aminotransferase (Chapter 3)                                |
| OCT                  | ornithine carbamoyltransferase (Chapter 3)                            |
| ODC                  | ornithine decarboxylase (Chapters 3 and 28)                           |
| 6-OHDA               | 6-hydroxydopamine (Chapter 26)                                        |
| 3-OMD                | 3-O-methyl-DOPA (Chapter 26)                                          |
| Orn                  | ornithine                                                             |
| Outbreak             | two or more incidents of disease attributed to a common cause         |
| PAH                  | phenylalanine hydroxylase (Chapters 9 and 23)                         |
| PCPA                 | p-chlorophenylalanine (Chapter 9)                                     |
| PCR                  | polymerase chain reaction (Chapter 6)                                 |
| PD                   | Parkinson's disease (Chapters 25 and 26)                              |
| PDCAAS               | protein digestibility-corrected amino acid score (Chapters 14 and 15) |
| PERK                 | PKR-like endoplasmic reticulum kinase (Chapter 13)                    |
| PET                  | positron emission tomography (Chapter 24)                             |
| PFC                  | prefrontal cortex (Chapter 25)                                        |
| РНВ                  | prohibitin (Chapter 10)                                               |
| Phe                  | phenylalanine                                                         |
| PKR                  | double-stranded RNA (dsRNA)-dependent protein kinase (Chapter 13)     |
| PKU                  | phenylketonuria (Chapters 19, 23, and 28)                             |
| PLP                  | pyridoxal phosphate (Chapters 2 and 6)                                |
| PMP                  | pyridoxamine phosphate (Chapter 2)                                    |
| PPU                  | post-prandial protein utilization (Chapters 15 and 16)                |
| Pro                  | proline                                                               |
| Proteomes            | total complement of proteins within a cell                            |
| PRP                  | proline-rich proteins (Chapter 28)                                    |
| PRPP                 | 5-phosphoribosyl-1-pyrophosphate                                      |
| PRT                  | protein (Chapter 17)                                                  |
| PTZ                  | pentylenetetrazole (Chapter 25)                                       |
| Pyr                  | pyruvate                                                              |
| AAV                  | recombinant-adeno-associated virus (Chapter 26)                       |
| &D                   | research and development                                              |
|                      | research and development                                              |
| AGE                  | receptor for AGE (Chapter 22)                                         |