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This book presents a detailed and mostly elementary exposition of the gen-
eralized Riemann integrals discovered by Henstock, Kurzweil, and McShane.
Along with the classical results, it contains some recent developments con-
nected with lipeomorphic change of variables, higher-dimensional multipli-
ers, and the divergence theorem for discontinuously differentiable vector
fields.

Defining the Lebesgue integral in Euclidean spaces from McShane’s point
of view has a clear pedagogical advantage, since the initial stages of develop-
ment are both conceptually and technically simpler. The McShane integral
evolves directly from the basic ideas about integration taught in elementary
calculus. The difficult transition from subdividing the domain to subdivid-
ing the range, intrinsic to the Lebesgue definition, is completely bypassed.
The unintuitive Carathéodory concept of measurability is also made more
palatable by means of locally fine partitions.

The mathematical significance of the generalized Riemann integrals
emerges when the Henstock-Kurzweil approach is used to define the Denjoy—
Perron integral. While there is little similarity between the classical defini-
tions of Lebesgue, Denjoy, and Perron, the Lebesgue and Denjoy—Perron
integrals are naturally connected via the McShane and Henstock—Kurzweil
definitions. This is used to obtain a coordinate free multidimensional integral
which provides an unrestricted Gauss—-Green theorem for vector fields with
large sets of singularities.

Although written as a monograph, the book can be used as a grad-
uate text, and certain portions of it can be presented even to advanced
undergraduate students with a working knowledge of limits, continuity, and
differentiation on the real line.
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Preface

If we think of the Lebesgue in-
tegral as God sent, then differen-
tiable functions whose derivatives
are not Lebesgue integrable may
appear evil. The challenge is to
resolve the conflict, particularly
in higher dimensions.

This book presents a detailed and mostly elementary exposition of the gen-
eralized Riemann-Stieltjes integrals discovered by Henstock, Kurzweil, and
McShane more than thirty years ago. Aside from the classical results, it
contains some recent developments connected with lipeomorphic change of
variables, higher-dimensional multipliers, and the divergence theorem for dis-
continuously differentiable vector fields.

Roughly speaking, the generalized Riemann integrals differ from the clas-
sical Riemann integral in that uniformly fine partitions of the integration
domain are replaced by locally fine partitions. This idea is perhaps best
explained by looking at the numerical evaluation of integrals by means of

rectangular approximations. For instance, suppose we want to evaluate the
integral
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The behavior of the integrand in the intervals [1073,1] and [1,103%] is very
different: it oscillates rapidly in the first interval and decreases steadily to
zero in the second. From this observation, it is easy to conclude that
employing uniformly fine (e.g., equidistant) partitions would be wasteful.
The most efficient evaluation of the integral is provided by a rectangular
approximation based on a partition of 1073, 10%] that is fine in [1073,1] and
coarse in [1,10%]. Such a partition is an example of a locally fine partition
of the interval [1073,10%]. In general, the mesh of a locally fine partition
varies from point to point. The full impact of this idea is well illustrated by
Example 2.2.9 below.

The ingenious passage from uniformly fine to locally fine partitions has
profound consequences: instead of the classical Riemann integral we obtain
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the Lebesgue and Denjoy—Perron integrals, depending upon whether the Mc-
Shane or Henstock-Kurzweil approach is used.

While in the final analysis there is no substitute for the standard defi-
nition of the Lebesgue integral in an abstract measure space, defining the
Lebesgue integral in Euclidean spaces from McShane’s point of view has
a clear pedagogical advantage: the initial stages of development are ap-
preciably simpler, both conceptually and technically. The McShane integral
evolves naturally from the initial ideas about integration we learn in the first
courses of calculus. The traumatic transition from subdividing the domain
to subdividing the range, intrinsic to the Lebesgue definition, is completely
bypassed. The unintuitive Carathéodory concept of measurability is also
made more palatable by means of locally fine partitions.

What has been said about the Lebesgue integral is true to an even larger
degree when the Henstock-Kurzweil approach is used to define the Denjoy—
Perron integral. While there is little similarity between the classical defini-
tions of Lebesgue, Denjoy, and Perron, introducing the Lebsgue integral by
McShane’s definition provides a natural path to the more delicate integral of
Henstock and Kurzweil. In my opinion, the successful multidimensional gen-
eralizations of the Denjoy—Perron integral obtained during the past decade
are due mainly to the simplicity of the Henstock-Kurzweil definition.

Beyond advanced calculus, the prerequisites for understanding this book
amount to little more than mathematical sophistication. My primary goal
has been to make the material understandable to beginners whose back-
ground does not exceed the first year of graduate school. In fact, a large
portion should be accessible to any undergraduate student who has a work-
ing knowledge of limits, continuity, and differentiation on the real line. On the
other hand, it is only fair to admit that some familiarity with the Lebesgue
integral will help the reader to appreciate the subject. While certain aspects
of Perron and descriptive Denjoy integration enter implicitly into the expo-
sition, the constructive Denjoy integral is never used.

Parts I and II of the book deal with one-dimensional and multidimen-
sional integration, respectively. Although formally the one-dimensional Mc-
Shane integral is a special case of the m-dimensional one, I believe that
integration in higher dimensions is conceptually more complicated and often
difficult to understand by those who are not properly initiated on the real
line. This is particularly true for the conditionally convergent integrals of
Henstock-Kurzweil type: here even the formal similarity breaks down when
passing to dimensions greater than one. The unavoidable consequence of the
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two-level presentation is a certain amount of repetition, which I have strived
to minimize. It is limited to those cases when repeating an argument from
a slightly different point of view enhances understanding. Trivial repetitions
are invariably left to the reader.

The book is organized into thirteen chapters. The first two are devoted
to a completely elementary and self-contained development of the McShane
integral on the real line, including the convergence theorems and integration
by parts. These chapters, which elaborate my paper [39], are inspired by the
original work of McShane (see 28] and [29]). They are fully accessible to
more advanced undergraduate students; I have covered them successfully in
several undergraduate courses.

In Chapter 3, locally fine partitions are used to define measures on the
real line. This is conceptually more difficult but should present few problems
to the readers who absorbed Chapters 1 and 2. All the basic properties of
measures and measurable sets are carefully derived, and measurable functions
are introduced. We reconcile the additivity of generalized length on nonover-
lapping intervals with that of the induced measure on disjoint measurable
sets.

The relationship between measure and the McShane integral is investi-
gated in Chapter 4. We show that the measurability of a bounded set is
equivalent to the integrability of its characteristic function, and that the
value of the integral equals the measure of the set. Using sets of measure
zero, we extend the definition of the integral to functions which have infi-
nite values and are defined only almost everywhere. The main result is the
Vitali-Carathéodory theorem, which is used to show that the McShane and
Lebesgue integrals are equivalent.

Chapter 5 moves to the more demanding field of differentiation. It con-
tains the covering theorems of Vitali and Besicovitch, the Radon-Nikodym
theorem, and the Lebesgue decomposition of increasing functions.

The Henstock-Kurzweil integral is introduced in Chapter 6. We establish
its main properties, including the relationship to the McShane integral. The
central topic is the evolution of the fundamental theorem of calculus that
leads to the multidimensional generalization presented in Chapter 11. Here
the Stepanoff theorem plays an important role. We prove it in the real line
only, but in such a way that the generalization to any dimension is obvious.

Chapters 7, 8, and 9, which are the beginning chapters of Part II, contain
results concerning the multidimensional McShane integral. The divergence
theorem is obtained independently of Fubini’s theorem. Its proof is attuned
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to the spirit of generalized Riemann integration and points to further gener-
alizations discussed in Chapters 11, 12, and 13.

In Chapter 10 we show that the McShane integral is invariant with respect
to changes of coordinates that are more general than Lipschitz. This result is
derived from the equivalence between the McShane and Lebesgue integrals,
and does not have a direct relationship to McShane’s definition.

Chapters 11, 12, and 13 deal with multidimensional generalizations of
the Henstock-Kurzweil integral. They are motivated by the desire to re-
cover the flux of any differentiable vector field by integrating its divergence,
which may not be Lebesgue integrable. The topics are relatively new and will
introduce the reader to current research in the area. For various reasons
given in Chapter 13, it appears that the most useful generalization is the
BV-integral utilizing sets of finite perimeter. We sketch its definition and
hint at some of its properties without going into details. Many interesting
results concerning this integral have been obtained in recent years, but a
definitive treatment awaits future development. The area remains a subject
of vigorous research and, in my view, is not ready for presentation in book
form. The interested reader is referred to papers [19], [20], [21], [24], [37],
(36], [25], and [38].

Numerous exercises are scattered throughout the text, the majority of
them containing easily provable results that form an integral part of the
exposition. Thus a diligent effort should be made to work them out.

For completeness, proofs of several well-known theorems have been in-
cluded. No originality is claimed: these proofs are simple adaptations of those
found in standard texts such as (11}, [43], [44], and [49].

I consciously avoided abstractions such as Henstock’s division spaces,
generalized limits, or functions with values in Banach spaces. The readers
who wish to pursue a more abstract approach to Riemann integration may
consult the books of Henstock ([14], [15], [16]), Kurzweil ([23]), and McShane
([28], [30)).

The present book contains no historical comments.

Davis, California W.F.P.



Acknowledgments

It is a pleasure to acknowledge the contributions of my teachers, colleagues,
and friends towards the completion of this work.

I was introduced to nonabsolutely convergent integration by J. Maiik,
and learned about the Riemann approach to it from the works of R. Hen-
stock, J. Kurzweil, and the late E.J. McShane; many of my ideas grew out
of personal contacts with McShane. The present book may not have been
written, however, if it were not for the encouragement and moral support I
received from P.S. Bullen and R.D. Mouldin during the time I worked on
the divergence theorems for discontinuously differentiable vector fields.

A major portion of the book was thought out during my visits to the
University of Palermo in Italy, the Royal Institute of Technology in Swe-
den, and the Catholic University of Louvain in Belgium. I am indebted to
B. Bongiorno, M. Giertz, and J. Mawhin for inviting me to their respective
institutions and for their willingness to collaborate on problems related to
the theme of this book. The invitations by A. Vol&i¢ to lecture on the gener-
alized Riemann integral at the School of Measure Theory and Real Analysis
in Grado, Italy, helped me greatly to organize the presented material.

During the preparation of the manuscript I benefited from discussions
with N.L. Burkett, G.D. Chakerian, M. Chlebik, A. Fialowski, R.J. Gard-
ner, C. Gorez, M. A. Jodeit, W.B. Jurkat, J. Kral, J. G. Kupka, P.Y. Lee,
P. Mattila, M. Miranda, D.J.F. Nonnenmacher, M.J. Paris, K. Prikry,
P. Pucci, A. Salvadori, I. Tamanini, and R. Vyborny. A thoughtful criticism
given by B.S. Thomson substantially improved the exposition; in particular,
he suggested the treatment of measures adopted in Chapter 3. Z. Buczolich
constructed some essential examples; J. W. Mortensen and A. Novikov coau-
thored the main results of Sections 12.8 and 12.7, respectively.

Several improvements are due to R.J. Battig and A.S. Jiang, who read
various segments of the manuscript. E. J. Howard and J. W. Mortensen kindly
agreed to undertake the tedious task of proofreading the final version and
weeded out a multitude of misprints and errors; those which remain are the
sole responsibility of the author. Throughout this writing V. H. DuBose and
N.R. Staargaard selflessly provided on-line help with the intricacies of English
grammar. In this regard I am also obliged to the Cambridge University Press,
in particular to L. C. Gruendel and R. S. Wells, for their editorial help.

W.F.P.



Contents

Preface page Xi

Acknowledgments XV

I One-dimensional integration

1 Preliminaries 3
1.1 Lengths 4
1.2 Partitions )
1.3 Stieltjes sums 7
2 The McShane integral 8
2.1 The integral 8
2.2 Absolute integrability 12
2.3 Convergence theorems 17
2.4 Connections with derivatives 24
2.5 Gap functions 30
2.6 Integration by parts 32
3 Measure and measurability 37
3.1 Extended real numbers 37
3.2 Measures 38
3.3 Measurable sets 44
3.4 Calculating measures 52
3.5 Negligible sets 55
3.6 Measurable functions 56
3.7 The ag-measure 60
4 Integrable functions 64
4.1 Integral and measure 64
4.2 Semicontinuous functions 69
4.3 The Perron test 71
4.4 Approximations 7
5 Descriptive definition 81
5.1 AC functions 81

5.2 Covering theorems 86



viil

I1

10

Contents

5.3  Differentiation
5.4  Singular functions

The Henstock—Kurzweil integral
6.1  The P-integral

6.2  Integration by parts

6.3 Connections with measures
6.4 AC, functions

6.5 Densities

6.6  Almost differentiable functions
6.7  Gages and calibers

Multidimensional integration

Preliminaries

7.1  Intervals

7.2  Volumes

7.3  Partitions

7.4  Stieltjes sums

The McShane integral

8.1  The integral

8.2  Dirac volumes

8.3  The divergence theorem

8.4  Measures and measurability
8.5  The Perron test

8.6  The Fubini theorem

Descriptive definition
9.1 AC functions

9.2  Covering theorems
9.3  Derivability

Change of variables

10.1 Integrating over a set

10.2  Luzin maps

10.3 Lipschitz maps

10.4 The Rademacher theorem
10.5 The main formula

10.6 Almost differentiable maps

91
98

102
102
108
111
115
118
120
124

133
134
136
139
141

143
143
146
148
153
158
161

168
168
170
174

180
180
185
188
193
198
203



Contents

11 The gage integral

12

13

11.1
11.2
11.3
11.4
11.5
11.6
11.7

A motivating example

Continuous additive functions

Gages and calibers

The g-integral

Improper integrals

Connections with the McShane integral
Almost derivable functions

The F-integral

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

Shape and regularity

The F-integral

Derivability relative to F
Integration by parts

The quasi-Hausdorff measure
Solids

Change of variables
Multipliers

Recent developments

13.1
13.2
13.3
13.4

The S-integral
The perimeter
The flux

The BV-integral

Bibliography

List of symbols

Index

ix

207
207
211
214
218
225
228
230

239
239
242
246
251
253
258
261
265

273
273
278
285
287

293
296
299



Part I

One-dimensional integration






Chapter 1

Preliminaries

If FE is a set and II is a property of the elements of F, we denote by
{z € E:1I(z)}

the set of all elements of E that have the property II. A countable set is
either finite or countably infinite. A map f: X — Y from a set X into a set
Y isaset f C X xY such that for each z € X there is a unique y € Y with
(z,y) € f. As usual, we write y = f(z) instead of (z,y) € f. We note that if
X = 0 (the empty set), then for any set Y there is a unique map f : X —» Y,
namely the empty map f = X x Y = (. An enumeration of a countable set
C is a one-to-one map n — ¢, from a finite or infinite set {p,p +1,...} of
integers onto C; in most cases p = 1, but this is not required.
The set of all real numbers is denoted by R. An interval is a set

[a,b) ={z€eR:a<z<b}

where a,b € R. We say that an interval [a,b] is degenerate if a > b. A
nondegenerate interval is called a cell. Thus an interval is a cell if and
only if its interior is nonempty. The intersection of two intervals is again
an interval; however, the intersection of two cells need not be a cell. A
collection of intervals is called nonoverlapping if their interiors are disjoint.
Note that a degenerate interval overlaps no interval (including itself). Aside
from intervals, we shall consider the segments

(a,b) = {xeR:a <z < b},
[a,b) = {zeR:a <z < b},
(a,b) = {zeR:a<z<b}.



