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Preface

It is undeniable that geometric ideas have been very important to the foundations
of modern discrete optimization. The influence that geometric algorithms have in opti-
mization was elegantly demonstrated in the, now classic, book Geometric Algorithms and
Combinatorial Optimization [145] written more than 25 years ago by M. Grotschel, L.
Lovdsz, and A. Schrijver. There, in a masterful way, we were introduced to the power
that the geometry of ellipsoids, hyperplanes, convex bodies, and lattices can wield in opti-
mization. After many years, students of integer programming today are exposed to notions
such as the equivalence of separation and optimization, convex hulls, and membership, and
to the many examples of successful application of these ideas such as efficient algorithms
for matchings on graphs and other problems with good polyhedral characterizations [298],
[299], [300] and the solution of large-scale traveling salesman problems [14]. These results
were a landmark success in the theory of integer optimization.

But in just the past 15 years, there have been new developments in the understanding
of the structure of polyhedra, convex sets, and their lattice points that have produced new
algorithmic ideas for solving integer programs. These techniques add a new set of powerful
tools for discrete optimizers and have already proved very suitable for the solution of a
number of hard problems, including attempts to deal with nonlinear objective functions and
constraints in discrete optimization. Unfortunately, many of these powerful tools are not
yet widely known or applied. Perhaps this is because many of the developments have roots
in areas of mathematics that are not normally part of the standard curriculum of students in
optimization and have a much more algebraic flavor. Examples of these new tools include
algebraic geometry, commutative algebra, representation theory, and number theory.

We feel that the unfamiliar technical nature of these new ideas and the lack of expos-
itory accounts have unnecessarily delayed the popularity of these techniques among those
working in optimization. We decided to write a text that would not demand any background
beyond what we already assume from people in mathematical programming courses. This
monograph is then intended as a short, self-contained, introductory course in these new
ideas and algorithms with the hope of popularizing them and inviting new applications.
We were deeply inspired by the influential book [145] and we humbly try to follow in its
footsteps in the hope that future generations continue to sce the interdependence between
beautiful mathematics and the creation of efficient optimization algorithms.

This book is meant to be used in a quick, intense course, no longer than 15 weeks.
This is not a complete treatise on the subject, but rather an invitation to a set of new ideas
and tools. Our aim is to popularize these new ideas among workers in optimization.

e We want to make it possible to read this book even if you are a novice of integer
and linear programming (and we have taught courses with some students in that
category). For this reason, we open in Part I with some of the now well-established
techniques that originated before the beginning of the 1990s, a time when linear and

XVii



Xviii Preface

convex programming and integer programming underwent major changes thanks to
the ellipsoid method, semidefinite programming, lattice basis reduction, etc. Most of
what is contained in Part I is a short summary of tools that students in optimization
normally encounter in a course based on the excellent books [50, 145, 206, 259, 296
and probably should be skipped by such readers. They should go directly to the new
exciting techniques in Parts II, III, TV, and V. Readers that start with Part I will add
an extra three or four weeks to the course.

e Parts IL ITI, IV, and V form the core of this book. Roughly speaking, when the reader
works in any of these sections, nonlinear, nonconvex conditions are central, making
the tools of algebra necessary. When studying only these parts, the course is planned
to take about 12 weeks. In fact, all the parts are quite independent from each other
and cach can be the focus of independent student seminars.

— We begin in Part II with the idea of test sets and Graver bases. We show how
they can be used to prove results about integer programs with linear constraints
and convex objective functions.

— Part I1I discusses the use of generating functions to deal with integer programs
with linear constraints but with nonlincar polynomial objectives and/or with
multiobjectives.

— Part IV discusses the notion of Grébner bases and their connection with integer
programming.

— Part V discusses the solution of global optimization problems with polynomial
constraints via a sequence of linear algebra or semidefinite programming sys-
tems. These are generated based on Hilbert’s Nullstellensatz and its variations.

The book contains several exercises to help students learn the material. A course
based on these lectures should be suitable for advanced undergraduates with a solid math-
ematical background (i.e., very comfortable with proofs in linear algebra and real analysis)
or for graduate students who have already taken an introductory linear programming class.

Acknowledgments. We are truly grateful to many people who helped us both on produc-
ing the research presented here and later on presenting it to a larger audience of students
and colleagues.

First and foremost our collaborators and coauthors in many parts of this book were
fundamental for arriving at this point; their energy and ideas show on every page. In fact
several portions of the book are taken partially from our joint work. So many, many thanks
for everything to Robert Hildebrand, Chris Hillar, Jon Lee, Peter N. Malkin, Susan Mar-
gulies, Mohamed Omar, Shmuel Onn, Pablo Parrilo, Uriel Rothblum, Maurice Queyranne,
Christopher T. Ryan, Riidiger Schultz, Sven Verdoolaege, Robert Weismantel, and Kevin
Woods. Thanks!

Many other friends have been faithful supporters and collaborators in other closely
related projects or have developed ideas of great importance to this book. We learned so
much aboul discrete optimization from talking to Karen Aardal, Alper Atamtiirk, David
Avis, Egon Balas, Velleda Baldoni, Imre Bdrany, Sasha Barvinok, Amitabh Basu, Nicole
Berline, Dmitris Bertsimas, Lou Billera, Greg Blekherman, Sam Burer, Bill Cook, San-
jeeb Dash, Antoine Deza, Etienne de Klerk, Matthias Ehrgott, Fritz Eisenbrand, Komei
Fukuda, Bernd Girtner, Michel Goemans, Joao Gouveia, David Haws, Nicolai Hihnle,
Martin Henk, Serkan Hosten, Peter Huggins, Michael Joswig, Volker Kaibel, Gil Kalai,
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Victor L. Klee, Steve Klee, Jean Bernard Lasserre, Monique Laurent, Jim Lawrence, Hen-
drik W. Lenstra, Sven Ley(fer, Jeff Linderoth, Diane Maclagan, Jirka Matousek, Nimrod
Megiddo, Bernard Mourrain, Walter Morris, Jiawang Nie, Jorge Nocedal, Edwin O’Shea,
Dima Pasechnik, Javier Pena, Vicky Powers, Scott Provan, Franz Rendl, Bruce Reznick,
Maurice Rojas, Paco Santos, Andrds Sebd, Bernd Sturmfels, Levent Tungel, Tamds Ter-
laky, Rekha R. Thomas, Mike Todd, Frank Vallentin, Santosh Vempala, Michele Vergne,
Cynthia Vinzant, Emo Welzl, Laurence Wolsey, Yinyu Ye, Ruriko Yoshida, and Giinter M.
Ziegler.

We received comments, corrections, greal questions, suggestions, encouragement,
and help from Ilan Adler, Egon Balas, Dave Bayer, Matthias Beck, Victor Blanco, David
Bremner, Winfried Bruns, Katherine Burgraf, Samantha Capozzo, Gérard Cornuéjols, Persi
Diaconis, Brandon E. Dutra, Jennifer Galovich, Harvey Greenberg, Peter Gritzmann, Ok-
tay Giinliik, Christian Haase, Ilya Hicks, Dorit Hochbaum, Mark Junod, Yvonne Kem-
per, Eddie Kim, Bala Krishnamoorthy, Jeff Lagarias, Karla Lanzas, Adam Letchford,
Quentin Louveaux, Laci Lovdsz, Frangois Margot, Tyrrell McAllister, Juan Meza, Ga-
bor Pataki, Amber Puha, Mihai Putinar, Eric Rains, Jorg Rambau, Jiirgen Richter-Gebert,
Carla Savage, Lex Schrijver, Markus Schweighofer, Renata Sotirov, Frank Sottile, Tamon
Stephen, Seth Sullivant, Richard Tapia, Andreas Waechter, Roger Wets, Angelika Wiegele,
Mark C. Wilson, Peter Winkler, Alexander Woo, David Woodruff, Doron Zeilberger, Yuriy
Zinchenko, and Uri Zwick. We received help from many students that heard lectures from
us on the topic. Thanks for your patience and effort! We give special thanks to Astrid
Koppe for the artwork she provided for the cover.

We are truly grateful to the NSF for the financial support that made this book pos-
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the following institutions: University of California, Davis, Universitit Magdeburg, Tech-
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MAA (Mathematical Association of America), and St. John’s University deserve special
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the focus of special workshops.

Finally, our families are very special in our lives and this project is partly theirs too,
built with their love and patience in our long crazy hours and very distracted minds.

Jesus is truly grateful to his wife Ingrid who has put up with him and his difficult
workaholic nature for a long, long time. Mil gracias amor mio de todo corazon, todo te lo
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and intellect. Muchas, muchas gracias hijos mios y perdon por la falta de atencion, estoy
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