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Preface

Precision of experimental data in many areas of elementary particle physics
is quickly improving. For example, the anomalous magnetic moment of
the muon is measured with a fantastically high precision. Results from B
factories at SLAC and KEK for many quantities have low systematic errors
and very high statistics. Of course, there are many more examples of such
progress.

To compare high-precision experimental data with the theory, one has
to obtain equally high-precision theoretical expressions for the measured
quantities. Preparing physical programs for future colliders also requires
high-precision theoretical calculations. In order to be able to search for a
new physics, one has to understand standard processes (which can be a
source of background) at a highly detailed level.

This means, in particular, calculation of higher radiative corrections.
They are described by Feynman diagrams with one or several loops. Cal-
culation of such diagrams is a very non-trivial task. It involves solving deep
mathematical problems. Even when a suitable calculation algorithm has
been constructed, this is not the end of the story. Often, many thousands
of diagrams have to be calculated. This requires an unprecedented level of
automation of theoretical research: generation and calculation of the dia-
grams have to be done systematically, by computer programs, without any
interference of a human researcher. Some of the calculations of this kind
are among the largest computer-algebraic calculations ever performed. This
area of theoretical physics is progressing rapidly. A large number of physi-
cists in many countries are involved in such activities. And this number is
increasing. Many of today’s students in the area of theoretical high energy
physics will be involved in calculations of radiative corrections in the course
of their careers.
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Quantum field theory textbooks usually don’t describe methods of cal-
culation of multiloop Feynman diagrams. Most textbooks discuss quantiza-
tion of fields (including gauge theories), obtain Feynman rules, and show a
few simple examples of one-loop calculations. On the other hand, there is a
huge amount of literature for experts in the area of multiloop calculations,
usually in the form of original papers and specialized review articles. The
purpose of this book is to close the gap between textbooks and the mod-
ern research literature. The reader should have a firm grasp of the basics
of quantum field theory, including quantization of gauge fields (Faddeev-
Popov ghosts, etc.) and Feynman rules. These topics can be found in
any modern textbook, e.g., in [Peskin and Schroeder (1995)]. No previous
experience in calculating Feynman diagrams with loops is required. Funda-
mental concepts and methods used for such calculations, as well as a large
number of examples, are presented in this book in detail.

The main focus of the book is on quantum electrodynamics (QED) and
quantum chromodynamics (QCD). In the area of QED, some extremely
high-precision experimental data are available (anomalous magnetic mo-
ments, hydrogen atom, positronium). Correspondingly, some ground-
breaking theoretical calculations have been done. In the area of QCD,
very high precision comparisons of the theory and experiments are never
possible, because we still don’t know how to take non-perturbative phe-
nomena into account quantitatively and in a model-free way (except by
lattice Monte—Carlo simulations, whose accuracy is not very high but is in-
creasing). However, the QCD coupling constant is much larger, and several
terms of perturbative series are usually required to obtain the necessary
(moderate) precision. Calculations in QED and QCD are usually very sim-
ilar, but QCD ones are more lengthy — more diagrams, colour factors, etc.
Therefore, a large fraction of the text is (technically) devoted to QED, but
it should be considered also as a demonstration of methods which are used
in QCD.

The first part of this book is based on lectures given to students prepar-
ing for the M. Sc. degree at Dubna International Advanced School on The-
oretical Physics in 2005 and at Universitat Karlsruhe. They were published
as hep-ph/0508242. They were revised and extended for this book.

Practically all modern multiloop calculations are performed in the
framework of dimensional regularization. It is discussed in Chap. 1, to-
gether with simple (but fundamentally important) one-loop examples. In
Chaps. 2 and 3, one-loop corrections in QED and QCD are discussed. Here
we use the MS renormalization scheme, which is most popular, especially in
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QCD. Methods and results of calculation of two-loop corrections in QED
and QCD are introduced in Chap. 4, also using MS scheme. Chap. 5 is
devoted to the on-shell renormalization scheme, which is most often used
in QED at low energies, but also for heavy-quark problems in QCD. De-
coupling of heavy quarks is most fundamental in QCD; it is employed prac-
tically every time one does any work in QCD. It is presented in Chap. 6,
where a simplified QED problem is considered in detail; it makes under-
standing the problem much easier. This is the first time decoupling in the
MS scheme is considered in a textbook, with full calculations presented. Fi-
nally, Appendix A is a practical guide on calculating colour factors, which
is a necessary (though simple) step in any QCD work. Here I follow an
excellent book [Cvitanovié (web-book)] available on the Web.

The second part is based on lectures given to Ph. D. students at the
International School “Calculations at modern and future colliders”, Dubna
(2003), and at Universitdt Karlsruhe. They were published in Int. J. Mod.
Phys. A 19 (2004) 473. They are (slightly) revised for this book. This
second lecture course forms a natural sequel to the main one. It discusses
some advanced methods of multiloop calculations; in cases when the same
problem is discussed in both courses, it is solved by different methods. So,
studying both of the courses gives a wider perspective and a better toolbox
of methods. For a much more comprehensive presentation of modern meth-
ods of calculating Feynman integrals, the reader is addressed to a recent
book [Smirnov (2006)).

Of course, there are a lot of things which are not discussed in this book.
It only shows the most simple and fundamental examples. More compli-
cated scattering processes (diagrams with more external legs) and radiative
corrections in the electroweak theory (which often involve several kinds of
particles with different masses) are not considered here. But the general ap-
proaches (dimensional regularization, MS renormalization, integration by
parts...) remain the same. After reading this book, the reader should have
no problems reading specialized literature about more advanced problems.

I am grateful to D.J. Broadhurst, K.G. Chetyrkin, A. Czarnecki,
A.IL Davydychev, A.V. Smirnov, V.A. Smirnov for collaboration on var-
ious multiloop projects and numerous discussions, and to the organizers
of the Dubna schools D.I. Kazakov, S.V. Mikhailov, A.A. Vladimirov for
inviting me to give the lectures and for advices on the contents. A large
part of the work on the book was done at the University of Karlsruhe, and
was supported by DFG through SFB/TR 9; I am grateful to J.H. Kiihn
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and M. Steinhauser for inviting me to Karlsruhe and fruitful discussions.

Andrey Grozin
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PART 1
QED and QCD






Chapter 1

One-loop diagrams

1.1 Divergences, regularization and renormalization

When interactions in a quantum field theory may be considered weak, we
can use perturbation theory, starting from the theory of free fields in zeroth
approximation. Contributions to perturbative series can be conveniently
depicted as Feynman diagrams; corresponding analytical expressions can
be reconstructed from the diagrams using Feynman rules. If a Feynman
diagram contains a loop (or several loops), its expression contains an inte-
gral over the loop momentum (or several loop momenta). Such integrals
often diverge at large loop momenta (ultraviolet divergences). For example,
let’s consider the scalar field theory with the gy? interaction. The one-loop
correction to the propagator (Fig. 1.1) is

d*k
7 | e

At k — oo, the denominator behaves as k%, and the integral diverges loga-
rithmically.

(1.1)

k+p

Fig. 1.1 One-loop propagator diagram

Therefore, first of all, we need to introduce a regularization — some
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modification of the theory which makes loop integrals convergent. One can
sensibly manipulate and calculate regularized Feynman integrals. In the
physical limit the original theory is restored. Then we should re-formulate
the problem. The original perturbative expression (which contains diver-
gent Feynman integrals, and hence is senseless) expresses a scattering am-
plitude via bare masses and charges which are present in the Lagrangian.
But physical masses and charges don't coincide with these bare quantities,
if we take radiative corrections into account. Therefore, we should fix some
definition of physical masses and charges, and re-express our scattering
amplitude via these quantities. This procedure is called renormalization.
It is physically necessary, independently of the problem of divergences. If
the theory makes sense, expressions for scattering amplitudes via physical
masses and charges will remain finite when regularization is removed.

Of course, many different regularization methods can be invented. For
example, a cutoff can be introduced into loop integrals by replacing prop-
agators:

1 8 (|k?| < A?)
- :
m?2—k2—i0 m2—k2—1i0
The physical limit is A — oco. However, such a cutoff makes calculation
of diagrams extremely difficult, because the integration region has a com-

plicated shape. In addition to this, integrating by parts becomes very
complicated because of boundary terms. Pauli-Villars regularization

1 . 1 B 1
m2—k2—-i0 m2-k?2—-i0 M2-k2-1i0

(with the physical limit M — oo) is much better. However, it is not very
good for gauge theories: gauge bosons in an (unbroken) gauge theory must
be massless, and modifying their propagators by introducing massive terms
breaks the gauge invariance.

In general, a good regularization method should preserve simple rules
for manipulating loop integrals (like integration by parts), and also should
preserve as much of symmetries of the theory as possible. Unbroken symme-
tries make calculations much simpler by restricting possible form of results.
Sometimes, it is not possible to preserve all symmetries of a field theory
when performing its regularization. In such a case, it may happen that
renormalized results break some symmetry even in the limit of no regu-
larization. This means that the quantum field theory has less symmetries
than its classical Lagrangian suggests (an anomaly).
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A popular regularization of gauge theories (after analytic continuation
to Euclidean space-time) is to replace the continuous space-time by a cubic
lattice with spacing a. The physical limit of this regularization is a — 0. It
can be done in an exactly gauge-invariant way invented by Wilson (matter
fields live at lattice points, and gauge fields live on one-dimensional links).
Within this approach, quantitative results can be obtained by Monte—Carlo
simulation, without relying on perturbation theory. However, this regular-
ization breaks Lorentz invariance (only a smaller symmetry group, that of
a 4-dimensional cube, is preserved). This makes perturbative calculations
much more difficult.

The most popular method used in multiloop calculations nowadays is di-
mensional reqularization. Diagrams are calculated in d-dimensional space-
time. The dimensionality d must appear in all formulas as a symbol, it is
not enough to obtain separate results for a few integer values of d. The
physical limit is d — 4; therefore, d is often written as 4 — 2e. Divergences
in intermediate perturbative formulas appear as 1/e poles. After calculat-
ing a physical result in terms of physical parameters, we can take the limit
€ — 0 (this limit should exist in a sensible theory).

Dimensional regularization allows one to use simple algebraic rules for
manipulating Feynman integrals. In particular, all integrations are over
the whole infinite momentum space, and no surface terms appear during
integration by parts. Dimensional regularization preserves Lorentz invari-
ance (making it d-dimensional; when we take the limit € — 0 at the end of
calculations, results automatically have a 4-dimensionally Lorentz-invariant
form). In gauge theories, the d-dimensional Lagrangian is gauge invariant,
so, the symmetry is preserved. Most other symmetries are preserved, too.

However, there are exceptions. As we shall see in Sect. 1.6, the Dirac
matrix 75 cannot be generalized to d dimensions. Therefore, if we have a
theory with massless fermions having chiral symmetry, this symmetry is
not preserved in d dimensions, and in some cases it may be broken in final
renormalized results at € — 0 (azial anomaly). Also, continuation to d
dimensions changes dimensionalities of various quantities. Therefore, if the
4-dimensional massless theory was scale invariant, this symmetry (and a
more general conformal symmetry) will be broken by regularization. This
breaking can persist in renormalized results at € — 0 (conformal anomaly).
Another important symmetry which is broken by dimensional regularization
is supersymmetry. In supersymmetric theories, the numbers of bosonic and
fermionic degrees of freedom coincide. However, these numbers depend on
d in different ways, and supersymmetry is broken at d # 4.
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Until now, we discussed ultraviolet divergences. In theories with mass-
less particles (for example, gauge theories) some diagrams can also diverge
at k — 0 (infrared divergences)'. They cannot appear in results for mean-
ingful physical quantities (we cannot detect arbitrarily soft photons, so,
cross sections should be summed over final states with any number of such
photons). In order to do intermediate manipulations, we have to regularize
infrared divergences, too. This can be done by introducing a small photon
mass; however, such a regularization breaks gauge invariance. Dimensional
regularization regularizes infrared divergences as well as ultraviolet ones:
both appear as 1/ poles (in general, it is very difficult to trace which 1/e
poles are of ultraviolet origin and which are infrared).

1.2 Massive vacuum diagram

So, during these lectures, we are going to live in d-dimensional space—time:
one time and d — 1 space dimensions.

Fig. 1.2 One-loop massive vacuum diagram

Let’s consider the simplest diagram shown in Fig. 1.2:
/ L in?/?ma=V(n), D=m?—k?>—-i0 (1.2)
D Y : A

The power of m is evident from the dimensional counting, and our aim is
to find the dimensionless function V(n); we can put m =1 to simplify the
calculation. The poles in the complex kg plane are situated at

b= (VE2+1-i0) (13)

If there is an on-shell massless particle with momentum p in the process, there can
also be collinear divergences when the momentum k of a virtual particle is non-zero but
parallel to p.




