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Foreword

The specific objective of the seminar which engendered this volume was
to bring together a spectrum of engineering and applied mathematics scholars
and to afford them and other attendants a forum for a review of certain non-
linear problems of engineering. The seminar, conducted by the Department
of Mechanical Engineering, University of Delaware, was designed not pri-
marily as an occasion for the presentation of research results but rather as one
for exposition and discussion of nonlinear problems which occur in four
areas: Mathematical Methods, Fluid Mechanics, Mechanics of Solids, and
Transport Phenomena.

The sessions were held at the University of Delaware, Newark, Delaware,
June 19-21, 1963. The attendants were welcomed on behalf of the University
by President John A. Perkins, and Professor Jerzy Nowinski set the scientific
tone of the meeting in his opening remarks. The seminar program was
arranged and chaired by a faculty committee of the Department of Mechanical
Engineering consisting of W. F. Ames, J. P. Hartnett, J. L. Nowinski, and
B. S. Seidel.

The twenty lecturers were chosen on the basis of familiarity with their
respective subjects, research contributions, and for ability as expositors. The
seventy-five active participants, invited on a geographic basis, were especially
chosen to ensure a stimulating, profitable discussion of current research,
difficulties, and limitations of the fragmentary results in the nonlinear theory.
Future lines of research and teaching were subjects of many formal and
informal discussions.

Five of the lectures were not available for inclusion in the volume ; they were:

Nonlinear Problems of Elastic Stability and Post Buckling Behavior,
W. T. Koiter, Technical University, Delft, The Netherlands;

Some Orientable Material, J. L. Ericksen, Johns Hopkins University

Nonlinear Dispersive Waves, G. Whitham, California Institute of
Technology

Some Recent Research in Nonlinear Elasticity, J. J. Stoker, New York
University ‘

On the Nonlinear Theory of Hydrodynamic Stability and Transition to
Turbulence, C. C. Lin and D. J. Benney, Massachusetts Institute of
Technology.

We extend thanks to all of the lecturers, participants, and guests. Special
thanks are due to those who responded by travel from great distance. We
wish also to thank the National Science Foundation for its support through
grant GE-1314.

W. F. AMEs J. L. NowINsKI
J. P. HARTNETT B. S. SEIDEL



Preface

Modern engineering, with refinements in instrumentation, advances in
methods of computation, and its increasing venturesomeness, has made it
evident that formulations of natural laws which neglect or suppress nonlinear
terms often lead to inadequate or faulty results. Techniques are badly needed
which incorporate the nonlinear terms in the equations.

Unfortunately for the engineer the assumption of linearity underlies a
considerable domain of mathematics. Thus the mathematical tools available
for application to the problems of the natural world are essentially linear.
The great successes of the eighteenth and nineteenth centuries in constructing
effective theories for physical phenomena were primarily due to a linear
principle, that of superposition. However, these theories were only a first
approximation 'to the true situation; that is, nature, with scant regard to the
desires of mathematicians, seems to delight in formulating her mysteries in
terms of nonlinear systems of equations.

In the past the term “nonlinear mechanics” has been applied to a series of
investigations in the field of nonlinear ordinary differential equations which
have had their origin, for the most part, in applications to physical problems.
The literature of this area is now quite extensive and the research activity
both by engineers and mathematicians, is also extensive. This research has
been largely motivated by an engineering need for more precise results which
are only available through a nonlinear theory.

The need for techniques in nonlinear continuum mechanics is acute. The
literature is very sparse in these areas primarily because the mathematical
model is inevitably a nonlinear partial differential or integral equation or
combination. Properties of some of these systems as to the existence and
uniqueness of and bounds on solutions have been investigated. This work
continues at an accelerated pace.” Our knowledge is, however, still very
fragmented as can be seen from our infinitesimal knowledge of the important
Navier-Stokes equations.

General principles, especially in the area of nonlinear partial differential
equations, are still-few in number. Methods of solution of the associated
initial value and boundary value problems are most often, ad hoc, approximate
or numerical with all of the uncertainties that such methods create. The loss
of superposition is a severe one.

The history of nonlinear methods is largely unwritten. It is hoped that
the contributions to that history, presented in this volume, will be valuable
reference material in the present and in the future.

W. F. Ames
Fuly 1964
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New Methods in Nonlinear Mechanics

RICHARD BELLMAN

The RAND Corporation
Santa Monica, California

Introduction

Mathematics assumes many roles in the culture of our society, and
even within science itself, simultaneously both handmaiden and.queen.
Among these functions are the tasks of providing conceptual and analyt-
ical frameworks for scientific theories and of furnishing algorithms for
obtaining numerical answers to numerical questions.

It is not sufficiently emphasized, particularly in the undergraduate
and graduate schools, that these various functions are intimately related.
We have seen in the past, notably in connection with quantum mechanics
and relativity theory, that numerical calculations combined with experi-
ment can overthrow elegant classical theories and point the way to the
development of still more elegant modern theories. In a similar fashion,
contemporary needs for greater precision and greater understanding
point the way to the development of new mathematical theories which
will yield the desired information. In particular, it is to be expected that
modern mathematical theories will take account of the existence of new
devices available for numerical work, such as digital and analog com-
puters.

In what follows, we wish to present some of the fundamental ideas of
two new mathematical theoriés which have already provided powerful
computational approaches [1-6]. These theories, invariant imbedding
and dynamic programming, are based upon new conceptual approaches
to classical analysis and mathematical physics.
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Il
The Comparative Approach

A basic device in the study of phenomena in all fields is the use of
families of processes to illuminate the behavior of an individual
process. Thus, we see Comparative Anatomy, Comparative Philology,
and, as a most important example, the theory of evolution in biology.

In the application of this mode of thought there are two crucial steps.
The first is the recognition of families of processes which can be used for
this imbedding, and the second is the derivation of useful relations
connecting various members of the engulfing family.

It is essential to keep in mind that a particular process can be imbed-
ded in many different ways, just as a finite-dimensional object can be
regarded as a cross-section of infinitely many higher dimensional
constructs.

We shall illustrate the advantages and disadvantages of different types
of imbedding by means of an idealized neutron transport process.

I
Classical Approach

Let us consider an idealized version of a neutron transport process in
which neutrons can move only to the left or right. This corresponds then
to motion in a rod. We suppose that when a neutron enters the interval
[y, ¥ + A] from either direction (where A is an infinitesimal), there is a
probability (1 — p(y)A) + o(A) of no interaction and a probability
P(¥)A + o(A) of “fission,” by which we mean that the original particle
disappears and is replaced by two like particles, one moving to the right
and one to the left.

=571 | —> (no interaction)
y y+A
_ # |

y y+A

- — (fission)

Assuming that there is a constant flux of particles per unit time inci-
dent at the left end point of a finite rod [a, b], we wish to determine the
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expected reflected flux and the expected transmitted flux, and to ascer-
tain whether or not there is a “critical length.”

Incident flux —>

{ i —— Transmitted flux
Reflected flux «— ¢

To treat these particular problems, we consider the family of problems
where we wish to determine the expected right-hand and left-hand
fluxes at a particular point y in the rod.

uy) «— Tt u(y)

I | |
a y b

The value u(a) is the desired reflected flux and o(b) is the transmitted
flux. This is certainly a meaningful imbedding.

It remains to obtain relations connecting the various members of the
family of problems. Since there will be many such relations in general,
we choose those that are particularly suited to our analytic and compu-
tational abilities. These restrictions dictate the use of differential or
difference equations. Let us see then if we can relate %(y) and 2(y) to
u(y £ A) and o(y + A).

oy —4A)  u(y) o(y)  u(y+A)

| | | | |
| | | |
a y—A y y+A b

On the basis of the assumptions we have made concerning local
interactions, we obtain the following relations:

u(y) = (1 = p(n)A)u(y + A) + p(n)AUy) + v(y))
o(y) = (1 = p(y — A)Ae(y — A) + p(AMY) + v(¥)

To obtain differential equations, we let A — 0. The resulting system of
differential equations is

3.1)

w(y) = —p()(y)
v'(y) = p()u(y)
with the two-point boundary-value condition
v@ =1, u)=0 (3.3)

Criticality will exist if there is a value of & for which u(y) and 2(y)
become infinite for all y inside [a, ].

3.2)
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1v.
Discussion

This is a very elegant and precise formulation of the problem with the
prime advantage that the basic equations are linear. This means that we
can use superposition techniques and, if the coefficients are constant,
transform techniques. Even in this last case, however, there are major
difficulties to overcome. The numerical solution of linear differential
equations can be reduced in a routine way to the numerical solution of
linear algebraic equations. This can be a difficult and frustrating affair,
and it is questionable whether this shift of the problem is a reduction in
many cases. If angular and energy dependence is taken account of, we
obtain either a very large-dimensional system of ordinary differential
equations, linear partial differential equations, or linear integro-differ-
ential equations.

In those problems where the Laplace transform of the solution can be
obtained in explicit analytic form, there is still the major obstacle of
obtaining a numerical inversion of the Laplace transform; see [7] and
[8] for a discussion of these matters.

If we allow interactions between particles, the classical equations of
transport become nonlinear. There are now no routine techniques for
either analytic or computational solution of the two-point boundary-
value problem.

V.
The New Approach of Invariant Imbedding

Let us, in view of what we have said above, considcr a new method of
imbedding which eliminates two-point boundary value aspects and
provides an analytic formulation solely in terms of initial values.

To answer the problem as posed above of determining the reflected
and transmitted fluxes associated with a rod of prescribed length [a, ],
we consider now the general problem of determining the reflected flux
from a rod of arbitrary length [, 8], —c0 <x < b.

Incident flux —>

Reflected flux «— *
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The reflected flux depends upon x, and we emphasize this fact by
the notation 7(x). Similarly the transmitted flux is denoted by #(x). This
is once again a meaningful imbedding and, indeed, the imbedding used
by the experimental physicist in the study of these processes.

It remains to obtain the relations connecting various members of the
family of functions 7(x) and #(x). Consider the diagram below.

——
————

it
<€

x x=A b

The flux 7(x) may be considered to be obtained in the following way:

(a) reflection on [x, x — A]

(b) reflection from [x — A, b] 5.1)
(c) reflection of the flux 7(x — A) in [x — A, x] )
(d) reflection of this last reflected flux from [x — A, 5]

All other reflections yield contributions of order A% and thus can be
neglected. Adding up the contributions of the interactions mentioned
above, we have

7(x) = pA + (1 — pA)[r(x — A)(1 — pA) + r*(x — A)pA] + O(A%) (5.2)
Letting A — 0, we obtain the nonlinea: differential equation
7'{x) = p(x)(1 + r(x)) (-3)
with the initial condition 7(0) = 0 [9-11].-

VL
Discussion

In the particular case discussed above, we can obtain an explicit
analytic solution. This is of little importance. In the more general case
where we take account of angular and energy dependence, the one-
dimensional Riccati equation is replaced by the matrix Riccati equation

R'(x) = A(x) + B(x)R + RB(x) + RC(x)R,  R(0) =0 (6.1)
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The solution of this equation can by means of a known simple trans-
formation be reduced to the solution of linear differential equations.
This, however, is not feasible if the dimension of R is large, since the
ultimate determination of R requires an inversion of a matrix of the
dimension of R.

The computational solution of (6.1) is a routine matter using a digital
computer for matrices up to order 50 or so. The only limitation at the
present time is that of rapid access storage, about 32,000 words. Using
tapes, we can probably go up very much higher at a relatively small
increase in time. Although we have not carried out calculations of this
nature, we foresee no difficulties. -

At the present time, at a cost of two or three million dollars, current
computers can be “souped up” to have rapid access storages of 10°. In
the foreseeable future, ten years or so, we can expect rapid access
storages of 107 to 108. With these capabilities, we will be able to handle
matrices of dimension 500 or 1000 and thus be far ahead of what the
experimental physicist is supplying in the way of data.

Let us emphasize the point that there is great merit to using both
imbeddings simultaneously, since each possesses certain useful and
desirable features, both analytically and computationally. Furthermore,
it is natural to suppose that there exist many other types of imbedding
with other useful features. An important byproduct of this new approach
is the realization that there is nothing sacrosanct about any particular
mathematical formulation of any physical process. Each formulation
must face the test of analytic and computational feasibility.

Vil.

Variational Processes

Let us now apply the foregoing concepts to the study of variational
processes. Consider the problem of minimizing the functional

3w =rg<u, v, 1) de 1)

over all functions u(t) such that u(a) = ¢. The usual approach, modeled
after the finite-dimensional variational procedure, leads to the Euler
equation
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og d[og
Sry E(%) =9 (7.2)

a second order nonlinear differential equation subject to various types
of two-point boundary-value conditions dependent upon the initial
assumptions. If, for example, we fix u(a) to be ¢, but leave u(b) variable,
then the variational analysis yields the second condition

og

=10 .
= (73)

t=b

Can we reformulate the variational problem so as to avoid the diffi-
culties attendant upon solving (7.2) subject to (7.3) and u(a) = ¢, and
the perhaps even more serious matter that (7.2) is only a sufficient
condition?

As we shall see, we can, using the theory of dynamic programming,
a theory which enables us to extend variational techniques to handle
stochastic and adaptive processes as well.

VIII.
Geodesics

To illustrate the principal ideas unencumbered by analytic details, let
us consider the problem of determining a path in phase space of mini-
mum time. Let p, and p, be the end points of the path (Fig. 1).

b2

b

Fic. 1.

To treat this problem using imbedding concepts, we consider the
more general problem of determining the minimal time to go from an



