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Preface

There has been considerable progress recently toward the development of
analytical techniques for attacking boundary-value problems in guided-wave
theory. This book is an attempt to present a unified account of a number of
these techniques. It is intended to serve as a graduate-level text, and it is
hoped that the book will also be found useful by researchers in the areas of
electromagnetics and acoustics. The emphasis is on elaborating the principles
of various mathematical techniques rather than on solving a large number of
specific problems. Thus the same geometrical configuration is frequently
chosen to serve as a typical example for the application of more than one
analytical technique that may be employed to attack a problem. This permits
convenient comparison of both the methods and the formats of solutions
derived by these techniques. A large number of exercises have been included,
accompanied by hints for solving them. These exercises deal with physical
phenomena associated with the study of waveguide discontinuity, radiation
and diffraction, and array problems and reference is made to the original
papers that discuss these problems.

The book begins with the presentations of preliminary and background
material in Chapter 1. Although some of this material is available in other
texts, its inclusion is mainly for convenience of later reference. However, it is
believed that Section 1-3, on the edge condition, and Section 1-4, on useful
asymptotic formulas, contain materials that cannot be conveniently located
in other sources.

Chapter 2 deals with the mode-matching technique, one of the most
commonly used methods for formulating boundary-value problems in guided-
wave theory. It illustrates the application of the direct-inversion and the
residue-calculus methods for the exact solution of a class of problems in-
volving waveguides and periodic structures. Chapters 2 and 3, both of which
deal with classes of problems that possess exact solutions, serve as important
background material for discussion of more advanced techniques in Chapters
4 and 5—techniques that are concerned with the derivation of semirigorous
solutions to a much wider class of problems, which do not lend themselves
to exact solution.

Chapter 3 presents a rather comprehensive discussion of the Wiener—Hopf
technique based on the application of Fourier transforms and the theory of
analytic continuation in complex variable theory. The Wiener-Hopf technique
is typically discussed only very briefly, or in passing, in many texts on electro-
magnetic theory, although the technique provides a powerful tool for solving
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vi Prefac

a host of boundary-value problems that conform to a special type of geometry
The style of presentation of this material is somewhat different from that c
Noble’s text on Wiener—Hopf technique, although our Chapter 3 makes fre
quent use of the material appearing in that excellent book. Chapter 3 als
includes some new forms of factorization formulas which enhance the use
fulness of the Wiener—Hopf method. An additional feature is the discussio
that establishes the connection between the Wiener—Hopf and the mode
matching techniques.

Chapters 4 and 5 are concerned with the generalization of the mode-matck
ing and Wiener—Hopf techniques, with a view to significantly broadenin
their ranges of applications. The modified residue-calculus method discusse
in Chapter 4 was developed only very recently but has found man
applications to problems related to open and closed region waveguide dit
continuity problems, phased arrays, and other periodic structures, particularl
when applied in conjunction with the generalized scattering-matrix technique
also discussed in this chapter. Another contribution of Chapter 4 is a d¢
scription of the generalization of the mode-matching technique to open-regio
problems.

Finally, the Wiener—-Hopf technique is generalized in Chapter 5so asto b
useful for a wider class of geometries. The generalization includes a cas
where the filling medium in the waveguide is inhomogeneous, a situation the
has not been previously discussed elsewhere using the Wiener—Hopf technique

Two other methods, the variational and quasi-static techniques, hav
been omitted from the list of topics because extensive discussions are readil
available in a number of texts and reference books.

During the course of preparation of this book, the authors received er
couragement and helpful criticism from many colleagues and friends at th
University of Illinois, Professor G. A. Deschamps, Professor Y. T. Lo, an
Mr. T. S. Li in particular. The book draws heavily upon the research publ:
cations and dissertations of former research students at the University ¢
Illinois: Drs. J. R. Pace, D. S. Karjala, C. P. Bates, G. F. VanBlaricum, Jr
T. Itoh, and others. To them, the authors are deeply indebted. The expe:
secretarial help of Mrs. Lilian Beck, Mrs. Sharon Gocking, Mrs. Avi
Opheim, and Mrs. Angie Johnson was much appreciated during the sever:
stages of the preparation of the manuscript as the text evolved over a perio
of two years. Finally, much of the research work included in the text wa
sponsored by the Air Force Cambridge Research Laboratories under th
monitorship of Mr. F. Zucker and Dr. R. A. Shore. The authors take thi
opportunity to express their thanks for the financial assistance received fror
the AFCRL through contract support.

Urbana, Illinois R. M. and S. W. L.



Basic Conventions and Notations

1. MKS units and e~!t time variation are used throughout (Section 1-2).

2. Y(x, z) usually may be identified by H,(x, z), and ¢(x,z) by E,(x, 2)
(Section 1-5).

3. y = (e — k22 = —j(k? — o?)"2, where « = ¢ + it and k = k, + ik,
(Section 1-6).

4. The Fourier transform pair is (Section 3-2)

Y(x, «) = \/%r J:) ¥(x, z)e'** dz

in2) = =7 ¥ et d

S. C = Euler’s constant = 0.57721... (Section 1-4).
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CHAPTER 1

Preliminaries

1-1 Introduction

The purpose of this book is to give a unified account of a number of analytical
methods that are found useful for solving a large class of open and closed
waveguide problems. As a preparatory step we will present in this chapter
some basic concepts and formulas to which subsequent discussions will
frequently refer. The material included in Sections 1-2, 1-5, 1-6, and 1-7 can be
found in several graduate-level textbooks and therefore serves only as a brief
reminder. However, some of the discussion on edge condition, presented in a
self-contained manner in Sections 1-3 and 1-4, may not be as readily accessible
from other sources. The advanced reader may choose to bypass this chapter
entirely and return to it when a particular reference is necessary.

1-2 Maxwell’s Equations

The behavior of the electromagnetic fields in a continuous medium, isotropic
or anisotropic, homogeneous or inhomogeneous, is governed by Maxwell’s
equations. In the MKS system of units, the differential forms of Maxwell’s
equations are

oB
Vxﬂ=%+1 2.2)
t
V-B=0 (2.3)
V- D = ﬁ (2.4)
Ly 2P
ves= 2 @.5)

with the various quantities defined as

electric field (in volts per meter)

magnetic field (in amperes per meter)

electric flux density (in coulombs per square meter)
magnetic flux density (in webers per square meter)

O XN

1



2 Preliminaries [Ch.

J: electric current density (in amperes per square meter)
p: electric charge density (in coulombs per cubic meter)

It is to be noted that these five equations, (2.1) through (2.5), are not a
independent. For example, with an appropriate initial condition we can ot
tain (2.3) by taking the divergence of (2.1). In a similar manner (2.4) may t
derived from (2.2), in conjunction with (2.5) and appropriate initial condition:

Throughout this book we will be concerned with time-harmonic electrc
magnetic fields only, and we will assume that all field quantities have a tim
variation given by exp(— iwt), where w is the angular frequency in radians.

Under this assumption the time derivatives in Maxwell’s equations may t
replaced by the factor —iw, and the common factor exp(—iwt) may be droppe
from these equations. Equations (2.1) through (2.5) then become

V x E = iwB (2.€
VxH=—iwD +J (2.5
V:B=0 (2.t
V:D=p (2.
V-J = iwp (2.1¢

Note that we have used boldface roman letters for the vectors that are comple
functions of space coordinates only.

The set of Maxwell’s equations given in (2.6) through (2.10) is not sufficier,
to determine the electromagnetic fields produced by given current and charg
densities. The additional equations necessary for this purpose are supplie
by relations between the fields (E, H), the flux densities (D, B), and the curren
density J, and are determined by the properties of the material medium in
volved.t These relations are generally known as the constitutive relations c
the medium. The media are usually grouped into two categories: isotropi
and anisotropic media.

Isotropic media. An isotropic medium is generally regarded as one in whic
the physical properties in the neighborhood of an interior point are the sam
in all directions. For most isotropic media, the constitutive relations are

D = ¢E, B = uH, J =0E 2.11

If €, u, and o are not functions of position, the medium is said to be homo
geneous; otherwise, it is called an inhomogeneous medium. The free space, o
vacuum, is an isotropic medium in which

€= R 300 farads/meter (2.12a

1 These relations are also dependent on the frames of reference of the mediun
and the observer if there is relative motion between these two frames.



Sec. 1-2] Maxwell’s Equations 3

p = po = 4m x 10~7 henrys/meter (2.12b)
a=0 (2.12¢)

For other isotropic media, it is convenient to introduce the dimensionless ratios

€ ©
“«=_ o= (2.13)
which are generally labeled the relative dielectric constant and relative
permeability, respectively.

Anisotropic media. In an anisotropic medium, the physical properties in the
neighborhood of a point may be different for different directions. Typical
examples are crystals, magnetized ferrites, and ionized media with externally
applied static magnetic fields. Their constitutive relations can be generally
represented by

D=¢E B=p-H J=oE (2.14)

where €, 1, and o are tensors of rank two, alternatively termed dyadics. We
will not deal with anisotropic media except in certain exercises, at which time
we will present the explicit forms of €, @, and o for some special anisotropic
media.

In dealing with guided-wave problems, we often face a situation in which
the physical properties of the medium change abruptly across one or several
surfaces. The behavior of the fields in the presence of such discontinuities is
governed by certain boundary conditions to be satisfied at the surfaces of the
discontinuities. These conditions may be derived by an application of
Maxwell’s equations to infinitesimally small regions containing these surfaces.
Some explicit forms of boundary conditions are as follows:

1. At a material boundary (discontinuous e and p; refer to Figure 1-1). If
the media in regions I and 2 have finite conductivities, the tangential electric
and magnetic components are continuous across the boundary. That is,

n x (E? — E®) =0 (2.15a)
n x (H? — HY) =0 (2.15b)

where n is the unit outward normal viewed from region 1.

Region 2

Region 1|

FiGure 1-1 Boundary surface.
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2. At a perfectly conducting surface. Let the medium in region 1 in FigL
1-1 be a perfect conductor (with an infinitely large conductivity o). Then t
boundary conditions are

nx E? =0 (2.1¢
n x (H® — H®) = J, (2.1¢€

where J; is the surface current density.

1-3 Radiation Condition and Edge Condition

In certain situations in which the region of interest either involves boundar
at infinity or contains geometrical singularities, it is possible to derive seve:
mathematically acceptable solutions of Maxwell’s equations, only one
which is consistent with anticipated physical phenomenon. Therefore, in the
situations it becomes necessary to apply certain additional physical constraii
to ensure the uniqueness of the solutions.

In an unbounded space with all sources contained in a finite region, t
additional constraint that governs the behavior of the fields at infinity is stat
in terms of the radiation condition, which may be applied in one of two wa;
If the medium in the space is lossy, we require that the fields vanish at infini
If the medium is lossless and isotropic, the behavior of the fields at infinity
governed by the Sommerfeld radiation condition, which may be stated
follows. The field at a large distance r from the source has a phase progressi
outward and has an amplitude that decreases at least as rapidly as r~1. Mc
precisely, any transverse components ¢ of the field (with respect to the
direction) must satisfy the condition

Eﬂ'eg"%”==° @3
where k = wV/ ue is the propagation constant of the medium.

Yet another situation, where the solution of Maxwell’s equations may not
unique, arises when the configuration of the problem contains geometris
singularities, such as sharp edges. The additional physical condition need
here, known as the edge condition, is supplied by the requirement that t
electrical and magnetic energy stored in any finite neighborhood of the ed
must be finite; that is,

L@mp+ﬂm%@90 G

as the volume V contracts to the neighborhood of the edge. For a smoc
edge, which may be regarded as locally straight, the differential volume
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(3.2) is dv = p dp d¢ dz, where (p, ¢, z) is the locally cylindrical coordinate
of the edge. Then from (3.2) one may deduce that in the neighborhood of the
edge, none of the field components of (E, H) should grow more rapidly than
p~1** with r > 0 as p— 0. Strictly speaking, it is not necessary to know a
priori the exact value of = but only its lower bound, which is greater than zero,
in order to derive a unique solution to Maxwell’s equations. In many instances,
however, it is convenient to have a prior knowledge of 7. We will now illustrate
how the characteristic value = can be calculated from Maxwell’s equations
and the knowledge of the edge configuration. The method we follow is based
on a study by Meixner.f For problems encountered in this book, it will be
sufficient to consider, for the purpose of determining =, a two-dimensional
perfectly conducting wedge as shown in Figure 1-2. The three media surround-
ing the edge in regions 1, 2, and 3 are characterized by (u,, €;), (12, €,), and

4

Region 1 (H, . €, )

Region 2
(M,,€,)

Region 3
(M, €5)

%,

FiGure 1-2 Perfectly conducting wedge surrounded by three different
isotropic media.

(uas, €3), respectively. The angles, ¢,, ¢,, and ¢3, are all defined between 0 and
27. Maxwell’s equations (2.6) and (2.7), together with the constitutive relations
(2.11), may be written in the cylindrical coordinate system (p, ¢, z) as follows:

+ J. Meixner, *“The Behavior of Electromagnetic Fields at Edges,” Inst.
Math. Sci. Res. Rept. EM-72, New York University, New York, N.Y., Dec. 1954.
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% _ aai o= FipEy 3
%%(P o) ;1)23_% = iwpH
10505 o,
B, OB i, o
pap(” H,) — 161;{) = —iwek,

Since the field behavior near the edge p = 0 is of interest, we may expa
each of the field components in different angular regions as a power series
p. Recall from the edge condition that in the neighborhood of the edge
components of the field can grow more rapidly than p=1*%, with = > 0. W
this in mind we may write

E,=p " [a{ + ap + ap* + - - -]

E, = p 1+ b9 + bPp + bPp? + - - -] @3
E.=p e + Pp + p2 + -]

H, = p~ 1+ AP + APp + APp? + - - -]

H, = p **[BY + BPp + BYPp?® + ---] 3
H, = p=**1[C{ + CPp + CPp* + -]

where j = 1, 2, and 3, corresponding to fields in the three regions of Figt
1-2. The coefhicients in (3.5) and (3.6) are functions of ¢ and z only. So
of the relations between these coefficients can be determined by inserti
(3.5) and (3.6) into Maxwell’s equations in (3.3) and (3.4) and comparing
coefficients of equal powers of p. When this is done, the following relatic
are obtained:

c(r—1)=0 3.

. acY 8BV
— ], Gy — 221 0 -
lwe,ag a¢ oz (3. i

[¢)]

—iwe; by = agzo — 7C{} 3.
DA i
0 = 7By — 3—q2 3.7



