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Preface

Thermoset polymers are an important class of materials with many superior
properties as compared with thermoplastic materials. Generation of thermoset
polymer nanocomposites by the incorporation of layered silicates and other nano-
fillers in the polymer matrices has led to enhancement of the property profiles of
the thermoset materials significantly. Nanocomposites with a large variety of
thermoset polymers have been explored, and vast knowledge on the synthesis
methodologies as well as properties has been generated. The goal of the book is
to assimilate these research findings on many thermoset polymer-based nanocom-
posite systems comprehensively so as to generate better insights into the design,
performance, and optimization of thermoset nanocomposites.

Chapter 1 reports the synthesis and properties of epoxy vermiculite nanocom-
posites. Vermiculite platelets were surface modified to enhance interfacial interac-
tions with the polymer, and the nanocomposites were generated using in situ
polymerization method. Interesting insights into the permeation properties of the
nanocomposites have been reported. Chapter 2 presents photoinduced polymeri-
zation as an efficient technique for rapid formation of highly cross-linked networks
from liquid epoxy resins. The reaction involves a cationic mechanism and is
usually initiated by UV light. Chapter 3 reports the synthesis and properties of
polyurethane (PU) nanocomposites, and it was observed that the key to superior
properties of nanocomposites is critically dependent on the choice of the organic
modifier used to modify the surface of clay as well as the nature of the polymer
itself. Chapter 4 reviews recent progresses on thermal properties of formaldehyde-
based thermoset/cellulose nanocomposites such as melamine-formaldehyde (MF)
resin/clay/cellulose, phenol-formaldehyde (PF) resin/clay/cellulose, or PF resin/
multiwalled carbon nanotube (MWCNT)/cellulose nanocomposites, particularly
by focusing on thermal curing or degradation kinetics of these nanocomposites.
Chapter 5 reports a review of mechanical properties of thermoset polymer nano-
composites. It is reported that the nanoclay particles provide to thermosets inter-
esting mechanical properties when the constituents and the processing parameters
are adequately selected. These properties are highly improved in the case of
rubbery matrix than in glassy matrix. Chapter 6 demonstrates the unsaturated
polyester clay nanocomposite systems. These composites are of high importance
as the unsaturated polyester resins are the most widely used thermoset matrix
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resin in the coatings and composites industry, and constitutes about three-fourth
of the total resins used. In Chapter 7, recent advances on applications of hyper-
branched polymers as clay surface modifications are presented, with particular
reference to the preparation of antimicrobial surface and adsorbents for Cr (VI)
water treatment. Chapter 8 focuses on new methods to generate metal- and clay-
reinforced nanocomposites. The development of in situ methods has clearly facili-
tated the major advances in the synthesis in a one-pot manner combining
polymerization processes leading to the network formation with intercalation/
exfoliation or nanoparticle formation, respectively. In Chapter 9, the preparation
and properties of the bio-based epoxy resin/hardener/layered silicate nanocom-
posites are described. The replacement of petroleum-based epoxy resin/hardener
with bio-based epoxy resin/hardener is very important from the viewpoint of the
conservation of limited petroleum resources and the protection of global environ-
ment. In Chapter 10, comprehensive account of electrical and electromagnetic
interference (EMI) shielding properties of thermosetting nanocomposites has
been provided with special reference to those based on conducting additives like
intrinsically conducting polymers and carbonaceous fillers like carbon nanotubes
and graphene.

Abu Dhabi Vikas Mittal
June 2013
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Epoxy-Vermiculite Nanocomposites
Vikas Mittal

1.1
Introduction

Epoxies form a special class of thermosetting polymeric materials having high
thermal and environmental stability. They are well known as creep-resistant mate-
rials with very high stiffness properties [1-3]. Owing to these properties, a wide
spectrum of epoxy applications is available, which includes the use of epoxies as
adhesives, coatings, printed circuit boards, electrical insulators, and so on. One of
the major areas where epoxy adhesives find tremendous use are packaging lami-
nates where their sole use is to hold together the various polymeric foils used
in these commercial packaging laminates. To save the material costs, an overall
decrease in the thickness of the packaging laminate can be achieved if the adhesive
can also be made to contribute to the properties required for a packaging material
apart from its function of being an adhesive. The common properties required
being the permeation barrier, mechanical performance, transparency, suitability
for food contact applications, ease of printability, and so on. Permeation barrier to
oxygen and water vapor form the most important property needed in the packaging
materials. This can be achieved by altering the polymer network structure obtained
by crosslinking of the epoxide groups with amines or other crosslinking agents
[4, 5]. The use of epoxy polymer with stiff rod-like units in the backbone can help
to enhance the required properties. The other alternative includes the incorporation
of inorganic fillers in the polymer matrix, this approach being easier to monitor and
control. As the filler shape, size, and interfacial interactions affect the polymer prop-
erties greatly, organically treated plate-like inorganic aluminosilicate particles can
be incorporated in the polymer matrix to achieve polymer nanocomposites for
improvement in barrier performance. By incorporating impermeable, transparent,
plate-like nanoparticles in the polymer matrix, the permeating molecules are forced
to wiggle around them in a random walk, hence diffusing through a tortuous
pathway [6-8]. Besides, the decrease in transmission rate of the permeant is a func-
tion of the aspect ratio of the inclusions, their volume fraction, and orientation.
The synthesis of epoxy—clay nanocomposites has been extensively studied; how-
ever, majority of these studies focused on enhancing the mechanical properties

Thermoset Nanocomposites, First Edition. Edited by Vikas Mittal.
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.
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1 Epoxy—Vermiculite Nanocomposites

with the incorporation of organically modified fillers [9-17], thus largely neglecting
the permeation properties. Only a few recent studies have discussed these proper-
ties in detail [18-23]. Apart from that, montmorillonite has been the most com-
monly used aluminosilicate in these studies. Owing to the low charge density
(0.25-0.5equivmol ™), a larger area per cation is available on the surface, which
leads to a lower basal plane spacing in the clay after surface ion exchange with
alkyl ammonium ions. On the other hand, minerals with high charge density
(1equivmol™), such as mica, and hence subsequent smaller area per cation, do
not swell in water and thus do not allow the cation exchange. However, alumino-
silicates with medium charge densities of 0.5-0.8 equiv mol™, such as vermiculite,
offer a potential of partial swelling in water and cation exchange, which can lead
to a much higher basal plane spacing in the modified mineral if optimum ion
exchange is achieved. In the pristine state, vermiculite particles are composed of
stacks of negatively charged 2: 1 aluminosilicate layers (ca. 0.95 nm thick) with one
octahedral sheet sandwiched between two opposing tetrahedral sheets and the
resuting regular gap in between (interlayer). The chemical constitution of its
unit cell is (Mg Al Fe);(AlSi),0,y(OH),Mg.(H,0), [24, 25]. Due to isomorphic
substitutions in the lattice, the layers have permanent negative charges that are
compensated mainly by hydrated Mg*" as interlayer cations. Owing to the higher
basal plane spacing in the modified mineral, the electrostatic interactions holding
the layers together can be expected to be lower than similar montmorillonite
counterparts thus increasing the potential of better properties of the hybrid
nanocomposites.

The goal of this investigation was to synthesize epoxy-vermiculite nanocompos-
ite coatings and to study their microstructure development as well as their oxygen
and water vapor barrier properties in comparison with already reported epoxy—
montmorillonite system [18]. Vermiculite platelets modified with two different
ammonium ions were prepared for the purpose. The epoxy matrix and the curing
agent were chosen to achieve polymer matrix, which meets the requirements of
the food and health regulations and has low gas permeability on its own. The
nanocomposite coatings were drawn on polyamide and polypropylene substrates
and the curing temperatures were kept low in order to avoid the thermal damage
to these substrate foils.

1.2
Experimental

1.2.1
Materials

The epoxy resin, bisphenol A diglycidyl ether (4,4™-isopropylidenediphenol digly-
cidyl ether) with an epoxide equivalent weight 172-176, was supplied by Sigma
(Buchs, Switzerland). Tetraethylenepentamine (TEPA) and tetrahydrofuran (THF)
were procured from Fluka (Buchs, Switzerland). Benzyldimethylhexadecylammo-



