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Preface

The core of linear algebra is essential to every mathematician, and we not only treat
this core, but add material that is essential to mathematicians in specific fields. This
book is for advanced researchers. We presume you are already familiar with
elementary linear algebra and that you know how to multiply matrices, solve linear
systems, etc. We do not treat elementary material here, though we occasionally return
to elementary material from a more advanced standpoint to show you what it really
means. We have written a book that we hope will be broadly useful. In a few places
we have succumbed to temptation and included material that is not quite so well
known, but which, in our opinion, should be. We hope that you will be enlightened
not only by the specific material in the book but also by its style of argument. We also
hope this book will serve as a valuable reference throughout your mathematical
career.

Chapter 1 reviews the metric Hermitian 3-algebra, which has been playing important
roles recently in sting theory. It is classified by using a correspondence to a class of the
super Lie algebra. It also reviews the Lie and Hermitian 3-algebra models of M-theory.
Chapter 2 deals with algebraic analysis of Appell polynomials. It presents the
determinantal approaches of Appell polynomials and the related topics, where many
classical and non-classical examples are presented. Chapter 3 reviews a universal
relation between combinatorics and the matrix model, and discusses its relation to the
gauge theory. Chapter 4 covers the nonnegative matrices that have been a source of
interesting and challenging mathematical problems. They arise in many applications
such as: communications systems, biological systems, economics, ecology, computer
sciences, machine learning, and many other engineering systems. Chapter 5 presents
the central theory behind realization-based system identification and connects the
theory to many tools in linear algebra, including the QR-decomposition, the singular
value decomposition, and linear least-squares problems. Chapter 6 presents a novel
iterative-recursive algorithm for computing GI for block matrices in the context of
wireless MIMO communication systems within RFC. Chapter 7 deals with the
development of the theory of operator means. It setups basic notations and states some
background about operator monotone functions which play important roles in the
theory of operator means. Chapter 8 studies a general formulation of Jensen’s operator
inequality for a continuous field of self-adjoint operators and a field of positive linear
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mappings. The aim of chapter 9 is to present a system of linear equation and
inequalities in max-algebra. Max-algebra is an analogue of linear algebra developed on
a pair of operations extended to matrices and vectors. Chapter 10 covers an efficient
algorithm for the coarse to fine scale transition in multi-flexible-body systems with
application to biomolecular systems that are modeled as articulated bodies and
undergo discontinuous changes in the model definition. Finally, chapter 11 studies the
structure of matrices defined over arbitrary fields whose elements are rational
functions with no poles at infinity and prescribed finite poles. Complete systems of
invariants are provided for each one of these equivalence relations and the
relationship between both systems of invariants is clarified. This result can be seen as
an extension of the classical theorem on pole assignment by Rosenbrock.

Dr. Hassan Abid Yasser
College of Science

University of Thi-Qar, Thi-Qar
Iraq
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Chapter 1

3-Algebras in String Theory

Matsuo Sato

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/46480

1. Introduction

In this chapter, we review 3-algebras that appear as fundamental properties of string theory.
3-algebra is a generalization of Lie algebra; it is defined by a tri-linear bracket instead of
by a bi-linear bracket, and satisfies fundamental identity, which is a generalization of Jacobi
identity [1-3]. We consider 3-algebras equipped with invariant metrics in order to apply them
to physics.

It has been expected that there exists M-theory, which unifies string theories. In M-theory,
some structures of 3-algebras were found recently. First, it was found that by using u(N) &
u(N) Hermitian 3-algebra, we can describe a low energy effective action of N coincident
supermembranes [4-8], which are fundamental objects in M-theory.

With this as motivation, 3-algebras with invariant metrics were classified [9-22]. Lie 3-algebras
are defined in real vector spaces and tri-linear brackets of them are totally anti-symmetric in
all the three entries. Lie 3-algebras with invariant metrics are classified into .44 algebra, and
Lorentzian Lie 3-algebras, which have metrics with indefinite signatures. On the other hand,
Hermitian 3-algebras are defined in Hermitian vector spaces and their tri-linear brackets are
complex linear and anti-symmetric in the first two entries, whereas complex anti-linear in the
third entry. Hermitian 3-algebras with invariant metrics are classified into u(N) & u(M) and
sp(2N) @ u(1) Hermitian 3-algebras.

Moreover, recent studies have indicated that there also exist structures of 3-algebras in
the Green-Schwartz supermembrane action, which defines full perturbative dynamics of a
supermembrane. It had not been clear whether the total supermembrane action including
fermions has structures of 3-algebras, whereas the bosonic part of the action can be described
by using a tri-linear bracket, called Nambu bracket [23, 24], which is a generalization of
Poisson bracket. If we fix to a light-cone gauge, the total action can be described by using
Poisson bracket, that is, only structures of Lie algebra are left in this gauge [25]. However, it
was shown under an approximation that the total action can be described by Nambu bracket
if we fix to a semi-light-cone gauge [26]. In this gauge, the eleven dimensional space-time
of M-theory is manifest in the supermembrane action, whereas only ten dimensional part is
manifest in the light-cone gauge.

©2012 Sato, licensee InTech. This is an open access chapter distributed under the terms of the Creative
I m. E H Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
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2 Linear Algebra — Theorems and Applications

The BFSS matrix theory is conjectured to describe an infinite momentum frame (IMF) limit
of M-theory [27] and many evidences were found. The action of the BFSS matrix theory can
be obtained by replacing Poisson bracket with a finite dimensional Lie algebra’s bracket in
the supermembrane action in the light-cone gauge. Because of this structure, only variables
that represent the ten dimensional part of the eleven-dimensional space-time are manifest in
the BFSS matrix theory. Recently, 3-algebra models of M-theory were proposed [26, 28, 29],
by replacing Nambu bracket with finite dimensional 3-algebras’ brackets in an action that is
shown, by using an approximation, to be equivalent to the semi-light-cone supermembrane
action. All the variables that represent the eleven dimensional space-time are manifest in these
models. It was shown that if the DLCQ limit of the 3-algebra models of M-theory is taken, they
reduce to the BFSS matrix theory [26, 28], as they should [30-35].

2. Definition and classification of metric Hermitian 3-algebra

In this section, we will define and classify the Hermitian 3-algebras equipped with invariant
metrics.

2.1. General structure of metric Hermitian 3-algebra

The metric Hermitian 3-algebraisamap V x V x V — V defined by (x,y,z) — [x,y; z], where
the 3-bracket is complex linear in the first two entries, whereas complex anti-linear in the last
entry, equipped with a metric < x,y >, satisfying the following properties:

the fundamental identity

([xy;2], viw] = [[x, 03], y;2] + [x, [y, ;0] 2] = [x,y; [z, w; 0] M

the metric invariance

<[xvwly>-—<x[ywv >=0 2)
and the anti-symmetry
[x.y;2] = —[y, x;2] ®3)
for
x,y,z,0,weV )

The Hermitian 3-algebra generates a symmetry, whose generators D(x, y) are defined by

D(x,y)z == [z,x:Y] (5)

From (1), one can show that D(x,y) form a Lie algebra,

[D(x,y), D(v,w)] = D(D(x,y)v,w) — D(v, D(y, x)w) (6)

There is an one-to-one correspondence between the metric Hermitian 3-algebra and a class of
metric complex super Lie algebras [19]. Such a class satisfies the following conditions among
complex super Lie algebras S = Sy @ S, where Sy and Sy are even and odd parts, respectively.
Sy is decomposed as S; = V @& V, where V is an unitary representation of Sy: for a € S,
u,vev,

l[a,ul e vV )
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and
< la,ul,o>+<u,la*,v] >=0 (8)
0 € V is defined by
=< ,0> )
The super Lie bracket satisfies

[V,V]=0, [V,V]=0 (10)
From the metric Hermitian 3-algebra, we obtain the class of the metric complex super Lie

algebra in the following way. The elements in Sy, V, and V are defined by (5), (4), and (9),
respectively. The algebra is defined by (6) and

[D(x,y),2] := D(x,y)z = [z, x; Y]

[D(x,y),2] := —D(y,x)z = —[z,y; 1]

[x,7] :== D(x,y)

[x,y]:=0

[%,7]:=0 (11)

One can show that this algebra satisfies the super Jacobi identity and (7)-(10) as in [19].

Inversely, from the class of the metric complex super Lie algebra, we obtain the metric
Hermitian 3-algebra by

[oyiz] = ally 2], %] (12)
where a is an arbitrary constant. One can also show that this algebra satisfies (1)-(3) for (4) as
in [19].

2.2. Classification of metric Hermitian 3-algebra

The classical Lie super algebras satisfying (7)-(10) are A(m —1,n — 1) and C(n + 1). The even
partsof A(m—1,n—1) and C(n+1) are u(m) @ u(n) and sp(2n) & u(1), respectively. Because
the metric Hermitian 3-algebra one-to-one corresponds to this class of the super Lie algebra,
the metric Hermitian 3-algebras are classified into u(m) @ u(n) and sp(2n) @ u(1) Hermitian
3-algebras.

First, we will construct the u(m) @ u(n) Hermitian 3-algebra from A(m —1,n — 1), according
to the relation in the previous subsection. A(m —1,n — 1) is simple and is obtained by dividing
sl(m,n) by its ideal. Thatis, A(m —1,n —1) = sl(m,n) whenm # nand A(n —1,n —1) =

sl(n,n)/Aly,.
h ¢
(ic+ hz) (13}

Real sl(m, n) is defined by
where /1 and hy are m x m and n x n anti-Hermite matrices and c is an n X m arbitrary complex
matrix. Complex s/(m, n) is a complexification of real s/(m, n), given by

(z g) (14)
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where a, B, 7y, and 6 are m x m, n X m, m x n,and n x n complex matrices that satisfy
trae = trd (15)
Complex A(m —1,n— 1) is decomposed as A(m —1,n — 1) = Sg & V @ V, where

a0
(0 5> €5
0p
(55) ev
00 -
(70> ev (16)
(9) is rewritten as V — V defined by

_(0B t_(00
B_(OO)H3_<ﬁ+O) (17)
where B € V and Bt € V. (12) is rewritten as
to_ oot
(X,Y;Z] = a[[Y, 2], X] :,x(gyz v y) (18)
for
0x
x=(3) v
_(0y
r= (38) ev
_(0z
2= (33) v
(19)
As a result, we obtain the u(m) @ u(n) Hermitian 3-algebra,
[x,y;2] = a(yz'x — xz'y) (20)

where x, y, and z are arbitrary n x m complex matrices. This algebra was originally
constructed in [8].

Inversely, from (20), we can construct complex A(m —1,n — 1). (5) is rewritten as

D(x,y) = (xy",y'x) € So 1)
(6) and (11) are rewritten as

[(xy*, y*x),(:c’y’+ v = (y' 2y [y ey 2]
[xy yx 2] =2tz —zytx
[(xy',ytx), 1‘]—yxw‘t—wxy

[ y'] = (xy fx)

[x y]

"yl = (22)
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x + z X’ It Z'
[( o y*X) ( ' y’*X’)] &

which forms complex A(m —1,n—1).

This algebra is summarized as

Next, we will construct the sp(2n) @ u(1) Hermitian 3-algebra from C(n +1). Complex C(n +
1) is decomposed as C(n +1) = Sp & V & V. The elements are given by

« 00 0
0-a0 0 | o
00a b 4
00 c—al

0 0 x12x2
00 00
0 00|V
0—xIoo

0 000

0 Oy1y2 .
yI 00 0 ev (24)
-yToo0 o0

where « is a complex number, a is an arbitrary n X n complex matrix, b and c are n x n complex
symmetric matrices, and x1, x, y1 and y; are n X 1 complex matrices. (9) is rewrittenas V — V
defined by B +— B = UB*U~!, where B € V, B € V and

0100
1000
U=1000 1 @5)
00-10
Explicitly,
0 0 X1 X2 000 O
oo 00 = | 0o 0oxp-x3
B=loxl 00 |78= ~x{00 0 (26)
0—x] 00 -x300 0
(12) is rewritten as
(X,Y;Z] := a[[Y,Z], X]
i 00_1/1]/2 000 O 00.1’1)(2
- 00 00 0 0z} —z} 00 00
B 0500'—4000 10 xI oo
[L\o—yT 0 0 -z100 0 0—xI 00
0 0 w;w;
00 00
“®lowl 00 (27)
0-wl 0 0
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for
0 0 x1x2
00 00
X=lox 00|V
0—x] 00
00 ny
00 00O
Y=1, yI 00 ev
0-yl 0o
0 0 Z1 2y
00 0O
z=|, T 00 ev (28)
0-z 00
where w; and w; are given by
(w1, w2) = —(112} + y223) (x1,%2) + (112} + %225) (1, ¥2) + (x2y] —x1y3)(23, —21)  (29)

As a result, we obtain the sp(2n) @ u(1) Hermitian 3-algebra,
[x,y:z] = a((y@2)x + (20 x)y — (x OY)2) (30)
for x = (x1,x2), ¥y = (y1,Y2), z = (21,22), where x1, X2, y1, Y2, 21, and z are n-vectors and
2 = (23, -)

a@b=ay-by—ar-b (31)

3. 3-algebra model of M-theory
In this section, we review the fact that the supermembrane action in a semi-light-cone gauge
can be described by Nambu bracket, where structures of 3-algebra are manifest. The 3-algebra
Models of M-theory are defined based on the semi-light-cone supermembrane action. We also
review that the models reduce to the BFSS matrix theory in the DLCQ limit.
3.1. Supermembrane and 3-algebra model of M-theory
The fundamental degrees of freedom in M-theory are supermembranes. The action of the
covariant supermembrane action in M-theory [36] is given by
i = 7 <
Sz = [ do(V=C+ ;e FT¥pnd, ¥(ILMILY + ST METVD, ¥
1 oMy worN
— 5 ¥rMa ¥eT 87‘P)) (32)

where M,N = 0,---,10, &, 8,7 = 0,1,2, Gy = MMITgp and TT,M = 9, XM — £ ¥TM3, . ¥
isa SO(1,10) Majorana fermion.
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This action is invariant under dynamical supertransformations,

Y =¢
5XM = _ieTM, (33)

These transformations form the A/ = 1 supersymmetry algebra in eleven dimensions,

[(51, 52]XM = —2i€1rM€2

[61,62]¥ = 0 (34)
The action is also invariant under the x-symmetry transformations,

Y = (1+T)x(0)
XM = i¥rM(1 4 )k (0) (35)

where

1
F= 3 me“ﬁmgnyng’rm,\, (36)

If we fix the x-symmetry (35) of the action by taking a semi-light-cone gauge [26]'
o2y = —y (37)
we obtain a semi-light-cone supermembrane action,

T . 14 e 0
Smz = / d3(f(\/—G + €T (¥ 0a ¥ (I TLY + ST1 910, ¥ — S ¥THo¥ Y10, ¥)

+ 9T 19, ¥95X 9, X/ )) (38)

where Gup = hop + T/ Tlg,, TT," = 9, XM — F¥T#9,¥, and hyp = 9, X105 X].

In [26], it is shown under an approximation up to the quadratic order in 9, X¥ and 0, but
exactly in X!, that this action is equivalent to the continuum action of the 3-algebra model of
M-theory,

1 1
So = [ doy/=g(- 5 1XLX, X5V - 2 (Auu{e", ¢, X1}
1 . 1
_gEm;\AuabAvch/\ef{(Pn/ (PC/ (Pd}{(Pb/(P '(Pf} ¥ EA
i i
—S ¥ A {9 ¥} + ¥ {X, X],‘I"}) (39)

where I,],K = 3,---,10 and {¢% ¢%, ¢} = €“ﬁ7aa(paaﬁcpbav¢” is the Nambu-Poisson
bracket. An invariant symmetric bilinear form is defined by [ dc\/=g¢"¢" for complete
basis ¢“ in three dimensions. Thus, this action is manifestly VPD covariant even when the
world-volume metric is flat. X/ is a scalar and ¥ isa SO(1,2) x SO(8) Majorana-Weyl fermion

! Advantages of a semi-light-cone gauges against a light-cone gauge are shown in [37-39]
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satisfying (37). EM'* is a Levi-Civita symbol in three dimensions and A is a cosmological
constant.

The continuum action of 3-algebra model of M-theory (39) is invariant under 16 dynamical
supersymmetry transformations,

ox! = ier’y
6Au(0,0) = 3ET1(X! (0)¥(o') - X () ¥ (),
1
0¥ = —Ayar{ 9", 9", X'}T!T1e — Z{X!, XI, XE}T e (40)
where I'yj26 = —e. These supersymmetries close into gauge transformations on-shell,
61,82 X" = Aca{o%, ¢, X"}
01, 82) Ay {9 9% } = Aa{ 9% 9%, Auca{ 9 ¢, }}
—Auan{9®, A 2ie—‘ZI-‘Velofll‘v
" . i
[61,62]F = Aca{9", 9", ¥} + (iE2T¥erTy, — g&TPerTkr )O¥ (41)
where gauge parameters are given by A,, = 2ié2F/‘€1Awb - iézl",KelX,’,X{f. Oﬂ‘l, = 0 and
oY =0are equations of motions of Ay, and ¥, respectively, where
O;/}v = Ayab {¢, (Pbl Avea{ 9", (Pdf = Avan{e® (obr A;tcd{‘l’c/ (Pd' H
i
+EyV/\(—{XIIAaAb{(P"/(PbI X[}l }+ 5{‘{’11-‘/\‘{,/ })
1
O¥ = —T*Aup{¢", ¢*, ¥} + STy (X", X/, ¥} (42)

(41) implies that a commutation relation between the dynamical supersymmetry
transformations is

6261 — 616, =0 (43)
up to the equations of motions and the gauge transformations.

This action is invariant under a translation,
sx'(@) =1, sA¥(0,0’) = n¥(0) — y*(<) (44)
where 7! are constants.

The action is also invariant under 16 kinematical supersymmetry transformations

Y =¢ (45)

and the other fields are not transformed. € is a constant and satisfy I'p1,é = é. € and ¢
should come from sixteen components of thirty-two N' = 1 supersymmetry parameters in
eleven dimensions, corresponding to eigen values +1 of Ty, respectively. This N = 1
supersymmetry consists of remaining 16 target-space supersymmetries and transmuted 16
k-symmetries in the semi-light-cone gauge [25, 26, 40].
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A commutation relation between the kinematical supersymmetry transformations is given by
5281 — 616, =0 (46)
A commutator of dynamical supersymmetry transformations and kinematical ones acts as
(6261 — 6155) X! (o) = ieT ey =
(6201 — 0182) A¥(0,0") = %élr"Fl(X’(U) - X!(0")& = 1 (0) = 5 () (47)
where the commutator that acts on the other fields vanishes. Thus, the commutation relation
is given by . )
0261 — 6102 = &y (48)
where J; is a translation.
If we change a basis of the supersymmetry transformations as
8 =546
d =i(6-9) (49)
we obtain
8581 — 6105 = &y
B8, — 518, = 6,
5,8, — 818 =0 (50)
These thirty-two supersymmetry transformations are summarised as A = (¢',4’) and (50)
implies the N = 1 supersymmetry algebra in eleven dimensions,

Doy — Ay = 5y (51)

3.2. Lie 3-algebra models of M-theory

In this and next subsection, we perform the second quantization on the continuum action of
the 3-algebra model of M-theory: By replacing the Nambu-Poisson bracket in the action (39)
with brackets of finite-dimensional 3-algebras, Lie and Hermitian 3-algebras, we obtain the
Lie and Hermitian 3-algebra models of M-theory [26, 28], respectively. In this section, we
review the Lie 3-algebra model.

If we replace the Nambu-Poisson bracket in the action (39) with a completely antisymmetric
real 3-algebra’s bracket [21, 22],

/ do\/—g — < >
{¢".¢",¢°} = [T°, T, T (52)
we obtain the Lie 3-algebra model of M-theory [26, 28],

1 1
So = <_E[XIIXI'XK]2 - E(A;mb[T”/ Tb, XI])Z

1 :
- §EHW\A;mbAvch/\ef[Ta/ ch Td] [be TL/ Tf]

— 5 ¥T# A [T, T ¥) + ¥y (X1, X, %)) (53)



