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A RADICAL APPROACH TO LEBESGUE’S THEORY
OF INTEGRATION

Meant for advanced undergraduate and graduate students in mathematics, this
lively introduction to measure theory and Lebesgue integration is rooted in and
motivated by the historical questions that led to its development. The author stresses
the original purpose of the definitions and theorems and highlights some of the
difficulties that were encountered as these ideas were refined.

The story begins with Riemann’s definition of the integral, a definition created
so that he could understand how broadly one could define a function and yet
have it be integrable. The reader then follows the efforts of many mathematicians
who wrestled with the difficulties inherent in the Riemann integral, leading to the
work in the late nineteenth and early twentieth centuries of Jordan, Borel, and
Lebesgue, who finally broke with Riemann’s definition. Ushering in a new way of
understanding integration, they opened the door to fresh and productive approaches
to many of the previously intractable problems of analysis.

David M. Bressoud is the DeWitt Wallace Professor of Mathematics at Macalester
College. He was a Peace Corps Volunteer in Antigua, West Indies, received his
PhD from Temple University, and taught at The Pennsylvania State University
before moving to Macalester. He has held visiting pcsitions at the Institute for
Advanced Study, the University of Wisconsin, the University of Minnesota, and
the University of Strasbourg. He has received a Sloan Fellowship, a Fulbright
Fellowship, and the MAA Distinguished Teaching Award. He has published more
than 50 research articles in number theory, partition theory, combinatorics, and the
theory of special functions. His other books include Factorization and Primality
Testing, Second Year Calculus from Celestial Mechanics to Special Relativity, A
Radical Approach to Real Analysis, and Proofs and Confirmations, for which he
won the MAA Beckenbach Book Prize.
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Preface

[ look at the burning question of the foundations of infinitesimal analysis without sorrow,
anger, or irritation. What Weierstrass — Cantor — did was very good. That's the way it had
to be done. But whether this corresponds to what is in the depths of our consciousness is a
very different question. I cannot but see a stark contradiction between the intuitively clear
fundamental formulas of the integral calculus and the incomparably artificial and complex
work of the “justification” and their “proofs” One must be quite stupid not to see this at
once, and quite careless if, after having seen this, one can get used to this artificial, logical
atmosphere, and can later on forget this stark contradiction.

— Nikolai Nikolaevich Luzin

Nikolai Luzin reminds us of a truth too often forgotten in the teaching of analysis;
the ideas, methods, definitions, and theorems of this study are neither natural nor
intuitive. It is all too common for students to emerge from this study with little
sense of how the concepts and results that constitute modern analysis hang together.
Here more than anywhere else in the advanced undergraduate/beginning graduate
curriculum, the historical context is critical to developing an understanding of the
mathematics.

This historical context is both interesting and pedagogically informative. From
transfinite numbers to the Heine—Borel theorem to Lebesgue measure, these ideas
arose from practical problems but were greeted with a skepticism that betrayed
confusion. Understanding what they mean and how they can be used was an uncer-
tain process. We should expect our students to encounter difficulties at precisely
those points at which the contemporaries of Weierstrass, Cantor, and Lebesgue had
balked.

Throughout this text I have tried to emphasize that no one set out to invent
measure theory or functional analysis. I find it both surprising and immensely sat-
isfying that the search for understanding of Fourier series continued to be one of the
principal driving forces behind the development of analysis well into the twentieth
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Xii Preface

century. The tools that these mathematicians had at hand were not adequate to the
task. In particular, the Riemann integral was poorly adapted to their needs.

It took several decades of wrestling with frustrating difficulties before mathe-
maticians were willing to abandon the Riemann integral. The route to its eventual
replacement, the Lebesgue integral, led through a sequence of remarkable insights
into the complexities of the real number line. By the end of 1890s, it was recognized
that analysis and the study of sets were inextricably linked. From this rich interplay,
measure theory would emerge. With it came what today we call Lebesgue’s domi-
nated convergence theorem, the holy grail of nineteenth-century analysis. What so
many had struggled so hard to discover now appeared as a gift that was almost free.

This text is an introduction to measure theory and Lebesgue integration, though
anyone using it to support such a course must be forewarned that I have intentionally
avoided stating results in their greatest possible generality. Almost all results are
given only for the real number line. Theorems that are true over any compact set
are often stated only for closed, bounded intervals. I want students to get a feel for
these results, what they say, and why they are important. Close examination of the
most general conditions under which conclusions will hold is something that can
come later, if and when it is needed.

The title of this book was chosen to communicate two important points. First,
this is a sequel to A Radical Approach to Real Analysis (ARATRA). That book ended
with Riemann’s definition of the integral. That is where this text begins. All of the
topics that one might expect to find in an undergraduate analysis book that were
not in ARATRA are contained here, including the topology of the real number line,
fundamentals of set theory, transfinite cardinals, the Bolzano—Weierstrass theorem,
and the Heine—Borel theorem. I did not include them in the first volume because
I felt I could not do them justice there and because, historically, they are quite
sophisticated insights that did not arise until the second half of the nineteenth
century.

Second, this book owes a tremendous debt to Thomas Hawkins’ Lebesgue’s
Theory of Integration: Its Origins and Development. Like ARATRA, this book is
not intended to be read as a history of the development of analysis. Rather, this
is a textbook informed by history, attempting to communicate the motivations,
uncertainties, and difficulties surrounding the key concepts. This task would have
been far more difficult without Hawkins as a guide. Those who are intrigued by the
historical details encountered in this book are encouraged to turn to Hawkins and
other historians of this period for fuller explanation.

Even more than ARATRA, this is the story of many contributions by many mem-
bers of a large community of mathematicians working on different pieces of the
puzzle. I hope that I have succeeded in opening a small window into the workings
of this community. One of the most intriguing of these mathematicians is Axel
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Harnack, who keeps reappearing in our story because he kept making mistakes, but
they were good mistakes. Harnack’s errors condensed and made explicit many of
the misconceptions of his time, and so helped others to find the correct path. For
ARATRA, it was easy to select the four mathematicians who should grace the cover:
Fourier, Cauchy, Abel, and Dirichlet stand out as those who shaped the origins
of modern analysis. For this book, the choice is far less clear. Certainly I need to
include Riemann and Lebesgue, for they initiate and bring to conclusion the princi-
pal elements of this story. Weierstrass? He trained and inspired the generation that
would grapple with Riemann’s work, but his contributions are less direct. Heine,
du Bois-Reymond, Jordan, Hankel, Darboux, or Dini? They all made substantial
progress toward the ultimate solution, but none of them stands out sufficiently.
Cantor? Certainly yes. It was his recognition that set theory lies at the heart of
analysis that would enable the progress of the next generation. Who should we
select from that next generation: Peano, Volterra, Borel, Baire? Maybe Riesz or
one of the others who built on Lebesgue’s insights, bringing them to fruition? Now
the choice is even less clear. I have settled on Borel for his impact as a young
mathematician and to honor him as the true source of the Heine—Borel theorem,
a result that I have been very tempted to refer to as he did: the first fundamental
theorem of measure theory.

I have drawn freely on the scholarship of others. I must pay special tribute to Soo
Bong Chae’s Lebesgue Integration. When 1 first saw this book, my reaction was
that I did not need to write my own on Lebesgue integration. Here was someone
who had already put the subject into historical context, writing in an elegant yet
accessible style. However, as I have used his book over the years, I have found that
there is much that he leaves unsaid, and I disagree with his choice to use Riesz’s
approach to the Lebesgue integral, building it via an analysis of step functions.
Riesz found an elegant route to Lebesgue integration, but in defining the integral
first and using it to define Lebesgue measure, the motivation for developing these
concepts is lost. Despite such fundamental divergences, the attentive reader will
discover many close parallels between Chae’s treatment and mine.

I am indebted to many people who read and commented on early drafts of
this book. I especially thank Dave Renfro who gave generously of his time to
correct many of my historical and mathematical errors. Steve Greenfield had the
temerity to be the very first reader of my very first draft, and I appreciate his many
helpful suggestions on the organization and presentation of this book. I also want to
single out my students who, during the spring semester of 2007, struggled through
a preliminary draft of this book and helped me in many ways to correct errors
and improve the presentation of this material. They are Jacob Bond, Kyle Braam,
Pawan Dhir, Elizabeth Gillaspy, Dan Gusset, Sam Handler, Kassa Haileyesus, Xi
Luo, Jake Norton, Stella Stamenova, and Linh To.



Xiv Preface

I am also grateful to the mathematicians and historians of mathematics who sug-
gested corrections and changes or helped me find information. These include Roger
Cooke, Larry D’ Antonio, Ivor Grattan-Guinness, Daesuk Han, Tom Hawkins, Mark
Huibregtse, Nicholas Rose, Peter Ross, Jim Smoak, John Stillwell, and Sergio B.
Volchan. I am also indebted to Don Albers of the MAA and Lauren Cowles of
Cambridge who so enthusiastically embraced this project, and to the reviewers for
both MAA and Cambridge whose names are unknown to me but who gave much
good advice.

Corrections, commentary, and additional material for this book can be found at
www.macalester.edu/aratra.

David M. Bressoud
bressoud@macalester.edu
June 19, 2007
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Introduction

By 1850, most mathematicians thought they understood calculus. Real progress
was being made in extending the tools of calculus to complex numbers and spaces
of higher dimensions. Equipped with appropriate generalizations of Fourier series,
solutions to partial differential equations were being found. Cauchy’s insights had
been assimilated, and the concepts that had been unclear during his pioneering
work of the 1820s, concepts such as uniform convergence and uniform continuity,
were coming to be understood. There was reason to feel confident.

One of the small, nagging problems that remained was the question of the
convergence of the Fourier series expansion. When does it converge? When it
does, can we be certain that it converges to the original function from which the
Fourier coefficients were derived? In 1829, Peter Gustav Lejeune Dirichlet had
proven that as long as a function is piecewise monotonic on a closed and bounded
interval, the Fourier series converges to the original function. Dirichlet believed
that functions did not have to be piecewise monotonic in order for the Fourier series
to converge to the original function, but neither he nor anyone else had been able
to weaken this assumption.

In the early 1850s, Bernard Riemann, a young protegé of Dirichlet and a student
of Gauss, would make substantial progress in extending our understanding of
trigonometric series. In so doing, the certainties of calculus would come into
question. Over the next 60 years, five big questions would emerge and be answered.
The answers would be totally unexpected. They would forever change the nature
of analysis.

1. When does a function have a Fourier series expansion that converges to
that function?

What is integration?

3. What is the relationship between integration and differentiation?
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4. What is the relationship between continuity and differentiability?

5. When can an infinite series be integrated by integrating each term?

This book is devoted to explaining the answers to these five questions — answers
that are very much intertwined. Before we tackle what happened after 1850, we
need to understand what was known or believed in that year.

1.1 The Five Big Questions
Fourier Series

Fourier’s method for expanding an arbitrary function F defined on [—, 7] into a
trigonometric series is to use integration to calculate coefficients:

ay = %/ F(x)cos(kx)dx (k> 0), (1.1)

by = %/" F(x)sintkx)dx (k> 1). (12)

The Fourier expansion is then given by

F(x) = % + Z [ax cos(kx) + by sin(kx)] . (1.3)
k=1

The heuristic argument for the validity of this procedure is that if F really can
be expanded in a series of the form given in Equation (1.3), then

/n F(x)cos(nx)dx

¢
T 0
a
=/ [0
e bl " &

b4 00 s
= / ?2—0 cos(nx)dx + Z / ay cos(kx) cos(nx) dx
- k=1 YT

[ax cos(kx) + by sin(kx)]) cos(nx) dx
1

+ Z f by sin(kx) cos(nx) dx. (1.4)
k=1Y~T

Since n and k are integers, all of the integrals are zero except for the one involving
a,. These integrals are easily evaluated:

/ F(x)cos(nx)dx = ma,. (1.5)

-
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Similarly,
4
/ F(x)sin(nx)dx = nb,. (1.6)

This is a convincing heuristic, but it ignores the problem of interchanging inte-
gration and summation, and it sidesteps two crucial questions:

1. Are the integrals that produce the Fourier coefficients well-defined?
2. If these integrals can be evaluated, does the resulting Fourier series actually
converge to the original function?

Not all functions are integrable. In the 1820s, Dirichlet proposed the following
example.

Example 1.1. The characteristic function of the rationals is defined as

1, x isrational,
fx)= ; ‘
0, x is not rational.

This example demonstrates how very strange functions can be if we take seriously
the definition of a function as a well-defined rule that assigns a value to each number
in the domain. Dirichlet’s example represents an important step in the evolution
of the concept of function. To the early explorers of calculus, a function was an
algebraic rule such as sinx or x> — 3, an expression that could be computed to
whatever accuracy one might desire.

When Augustin-Louis Cauchy showed that any piecewise continuous function
is integrable, he cemented the realization that functions could also be purely geo-
metric, representable only as curves. Even in a situation in which a function has no
explicit algebraic formulation, it is possible to make sense of its integral, provided
the function is continuous.

Dirichlet stretched the concept of function to that of a rule that can be individually
defined for each value of the domain. Once this conception of function is accepted,
the gates are opened to very strange functions. At the very least, integrability can
no longer be assumed.

The next problem is to show that our trigonometric series converges. In his
1829 paper, Dirichlet accomplished this, but he needed the hypothesis that the
original function F is piecewise monotonic, that is the domain can be partitioned
into a finite number of subintervals so that F is either monotonically increasing or
monotonically decreasing on each subinterval.

The final question is whether the function to which it converges is the function
F with which we started. Under the same assumptions, Dirichlet was able to show
that this is the case, provided that at any points of discontinuity of F, the value
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taken by the function is the average of the limit from the left and the limit from the
right.

Dirichlet’s result implies that the functions one is likely to encounter in physical
situations present no problems for conversion into Fourier series. Riemann recog-
nized that it was important to be able to extend this technique to more complicated
functions now arising in questions in number theory and geometry. The first step
was to get a better handle on what we mean by integration.

Integration

It is ironic that integration took so long to get right because it is so much older
than any other piece of calculus. Its roots lie in methods of calculating areas,
volumes, and moments that were undertaken by such scientists as Archimedes
(287-212 BC), Liu Hui (late third century AD), ibn al-Haytham (965-1039), and
Johannes Kepler (1571-1630). The basic idea was always the same. To evaluate
an area, one divided it into rectangles or triangles or other shapes of known area
that together approximated the desired region. As more and smaller figures were
used, the region would be matched more precisely. Some sort of limiting argument
would then be invoked, some means of finding the actual area based on an analysis
of the areas of the approximating regions.

Into the eighteenth century, integration was identified with the problem of
“quadrature,” literally the process of finding a square equal in area to a given
area and thus, in practice, the problem of computing areas. In section 1 of Book
I of his Mathematical Principles of Natural Philosophy, Newton explains how to
calculate areas under curves. He gives a procedure that looks very much like the
definition of the Riemann integral, and he justifies it by an argument that would be
appropriate for any modern textbook.

Specifically, Newton begins by approximating the area under a decreasing curve
by subdividing the domain into equal subintervals (see Figure 1.1). Above each
subinterval, he constructs two rectangles: one whose height is the maximum value
of the function on that interval (the circumscribed rectangle) and the other whose
height is the minimum value of the function (the inscribed rectangle). The true area
lies between the sum of the areas of the circumscribed rectangles and the sum of
the areas of the inscribed rectangles.

The difference between these areas is the sum of the areas of the rectangles
aKbl, bLcm, cMdn, dDEo. If we slide all of these rectangles to line up under
aKbl, we see that the sum of their areas is just the change in height of the function
multiplied by the length of any one subinterval. As we take narrower subintervals,
the difference in the areas approaches zero. As Newton asserts: “The ultimate ratios
which the inscribed figure, the circumscribed figure, and the curvilinear figure have
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Figure 1.1. Newton’s illustration from Mathematical Principles of Natural Philosophy. (Newton, 1999, p. 433)

to one another are ratios of equality,” which is his way of saying that the ratio of
any two of these areas approaches 1. Therefore, the areas are all approaching the
same value as the length of the subinterval approaches 0.

In Lemma 3 of his book, Newton considers the case where the subintervals are
not of equal length (using the dotted line fF in Figure 1.1 in place of /B). He
observes that the sum of the differences of the areas is still less than the change in
height multiplied by the length of the longest subinterval. We therefore get the same
limit for the ratio so long as the length of the longest subinterval is approaching
Zero.

This method of finding areas is paradigmatic for an entire class of problems in
which one is multiplying two quantities such as

e area = height x width,

¢ volume = cross-sectional area x width,
e moment = mass X distance,

* work = force x distance,

e distance = speed x time, or

e velocity = acceleration x time,

where the value of the first quantity can vary as the second quantity increases. For
example, knowing that “distance = speed x time,” we can find the distance traveled
by a particle whose speed is a function of time, say v(t) = 8t + 5,0 <t < 4.If we
split the time into four intervals and use the velocity at the start of each interval,
we get an approximation to the total distance:

distance ~5-1+13-1+4+21-14+29-1 = 68.



