

Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO₂) Capture

Edited by Paul Fennell and Ben Anthony

Woodhead Publishing Series in Energy: Number 82

Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO₂) Capture

Edited by

Woodhead Publishing is an imprint of Elsevier 80 High Street, Sawston, Cambridge, CB22 3HJ, UK 225 Wyman Street, Waltham, MA 02451, USA Langford Lane, Kidlington, OX5 1GB, UK

Copyright © 2015 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier website at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material.

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2015931790

ISBN 978-0-85709-243-4 (print) ISBN 978-0-85709-760-6 (online)

For information on all Woodhead Publishing publications visit our website at http://store.elsevier.com/

Printed in the United States of America

Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO₂) Capture

Related titles

Developments and innovation in carbon dioxide (CO_2) capture and storage technology Volume 1: Carbon dioxide (CO_2) capture, transport and industrial applications (ISBN 978-1-84569-533-0)

Developments and innovation in carbon dioxide (CO_2) capture and storage technology Volume 2: Carbon dioxide (CO_2) storage and utilisation (ISBN 978-1-84569-797-6)

Oxy-fuel combustion for power generation and CO₂ capture (ISBN 978-1-84569-671-9)

List of contributors

- A. Abad Instituto de Carboquímica (ICB-CSIC), Zaragoza, Spain
- J.C. Abanades INCAR-CSIC, Spanish Research Council, CSIC, Oviedo, Spain
- J. Adánez Instituto de Carboquímica (ICB-CSIC), Zaragoza, Spain
- M. Alonso INCAR-CSIC, Spanish Research Council, CSIC, Oviedo, Spain
- E.J. Anthony Cranfield University, Cranfield, UK
- Y. Arai Tokyo Institute of Technology, Meguro, Tokyo, Japan
- B. Arias INCAR-CSIC, Spanish Research Council, CSIC, Oviedo, Spain
- **A.R. Bidwe** Institute of Combustion and Power Plant Technology (IFK), University of Stuttgart, Stuttgart, Germany
- J. Blamey Imperial College London, London, UK
- M. Boot-Handford Imperial College London, London, UK
- M. Broda ETH Zurich, Zurich, Switzerland
- J.W. Butler University of British Columbia, Vancouver, BC, Canada
- X. Chen Southeast University, Nanjing, China
- M.E. Diego INCAR-CSIC, Spanish Research Council, CSIC, Oviedo, Spain
- **H. Dieter** Institute of Combustion and Power Plant Technology (IFK), University of Stuttgart, Stuttgart, Germany
- P. Fennell Imperial College London, London, UK
- **N. Florin** University of Technology Sydney, Broadway, NSW, Australia; Imperial College London, London, UK
- J.R. Grace University of British Columbia, Vancouver, BC, Canada
- A.M. Kierzkowska ETH Zurich, Zurich, Switzerland
- Y. Lara CIRCE, Universidad de Zaragoza, Zaragoza, Spain
- C. Linderholm Chalmers University of Technology, Gothenburg, Sweden
- P. Lisbona CIRCE, Universidad de Zaragoza, Zaragoza, Spain

xii List of contributors

A. Lyngfelt Chalmers University of Technology, Gothenburg, Sweden

I. Martínez ICB-CSIC, Spanish Research Council, CSIC, Zaragoza, Spain

A. Martínez CIRCE, Universidad de Zaragoza, Zaragoza, Spain

C.R. Müller ETH Zurich, Zurich, Switzerland

T. Pröll University of Natural Resources and Life Sciences, Vienna, Austria

L.M. Romeo CIRCE, Universidad de Zaragoza, Zaragoza, Spain

M. Rydén Chalmers University of Technology, Gothenburg, Sweden

G. Scheffknecht Institute of Combustion and Power Plant Technology (IFK), University of Stuttgart, Stuttgart, Germany

J.G. Yao Imperial College London, London, UK

Changsui Zhao University of Science and Technology of China, Hefei, China

Chuanwen Zhao Southeast University, Nanjing, China

Woodhead Publishing Series in Energy

1 Generating power at high efficiency: Combined cycle technology for sustainable energy production

Eric Jeffs

2 Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment

Edited by Kenneth L. Nash and Gregg J. Lumetta

- 3 Bioalcohol production: Biochemical conversion of lignocellulosic biomass Edited by Keith W. Waldron
- 4 Understanding and mitigating ageing in nuclear power plants: Materials and operational aspects of plant life management (PLiM)

 Edited by Philip G. Tipping
- 5 Advanced power plant materials, design and technology Edited by Dermot Roddy
- 6 Stand-alone and hybrid wind energy systems: Technology, energy storage and applications

Edited by John K. Kaldellis

- 7 Biodiesel science and technology: From soil to oil Jan C. J. Bart, Natale Palmeri and Stefano Cavallaro
- 8 Developments and innovation in carbon dioxide (CO₂) capture and storage technology Volume 1: Carbon dioxide (CO₂) capture, transport and industrial applications

Edited by M. Mercedes Maroto-Valer

9 Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste

Edited by Joonhong Ahn and Michael J. Apted

10 Wind energy systems: Optimising design and construction for safe and reliable operation

Edited by John D. Sørensen and Jens N. Sørensen

- 11 Solid oxide fuel cell technology: Principles, performance and operations Kevin Huang and John Bannister Goodenough
- 12 Handbook of advanced radioactive waste conditioning technologies Edited by Michael I. Ojovan
- 13 Membranes for clean and renewable power applications Edited by Annarosa Gugliuzza and Angelo Basile
- 14 Materials for energy efficiency and thermal comfort in buildings Edited by Matthew R. Hall
- 15 Handbook of biofuels production: Processes and technologies Edited by Rafael Luque, Juan Campelo and James Clark

- Developments and innovation in carbon dioxide (CO₂) capture and storage technology Volume 2: Carbon dioxide (CO₂) storage and utilisation Edited by M. Mercedes Maroto-Valer
- 17 Oxy-fuel combustion for power generation and carbon dioxide (CO₂) capture Edited by Ligang Zheng
- 18 Small and micro combined heat and power (CHP) systems: Advanced design, performance, materials and applications

 Edited by Robert Beith
- 19 Advances in clean hydrocarbon fuel processing: Science and technology Edited by M. Rashid Khan
- 20 Modern gas turbine systems: High efficiency, low emission, fuel flexible power generation
 Edited by Peter Jansohn
- 21 Concentrating solar power technology: Principles, developments and applications Edited by Keith Lovegrove and Wes Stein
- 22 Nuclear corrosion science and engineering Edited by Damien Féron
- 23 Power plant life management and performance improvement Edited by John E. Oakey
- 24 Electrical drives for direct drive renewable energy systems

 Edited by Markus Mueller and Henk Polinder
- 25 Advanced membrane science and technology for sustainable energy and environmental applications

 Edited by Angelo Basile and Suzana Pereira Nunes
- 26 Irradiation embrittlement of reactor pressure vessels (RPVs) in nuclear power plants Edited by Naoki Soneda
- 27 High temperature superconductors (HTS) for energy applications Edited by Ziad Melhem
- 28 Infrastructure and methodologies for the justification of nuclear power programmes Edited by Agustín Alonso
- 29 **Waste to energy conversion technology** *Edited by Naomi B. Klinghoffer and Marco J. Castaldi*
- 30 Polymer electrolyte membrane and direct methanol fuel cell technology Volume 1: Fundamentals and performance of low temperature fuel cells Edited by Christoph Hartnig and Christina Roth
- Polymer electrolyte membrane and direct methanol fuel cell technology Volume 2: In situ characterization techniques for low temperature fuel cells Edited by Christoph Hartnig and Christina Roth
- 32 Combined cycle systems for near-zero emission power generation Edited by Ashok D. Rao
- 33 Modern earth buildings: Materials, engineering, construction and applications Edited by Matthew R. Hall, Rick Lindsay and Meror Krayenhoff
- 34 Metropolitan sustainability: Understanding and improving the urban environment Edited by Frank Zeman
- Functional materials for sustainable energy applications

 Edited by John A. Kilner, Stephen J. Skinner, Stuart J. C. Irvine and Peter P. Edwards
- 36 Nuclear decommissioning: Planning, execution and international experience Edited by Michele Laraia
- 37 Nuclear fuel cycle science and engineering Edited by Ian Crossland

- 38 Electricity transmission, distribution and storage systems Edited by Ziad Melhem
- 39 Advances in biodiesel production: Processes and technologies Edited by Rafael Luque and Juan A. Melero
- 40 Biomass combustion science, technology and engineering Edited by Lasse Rosendahl
- Ultra-supercritical coal power plants: Materials, technologies and optimisation Edited by Dongke Zhang
- 42 Radionuclide behaviour in the natural environment: Science, implications and lessons for the nuclear industry

 Edited by Christophe Poinssot and Horst Geckeis
- Calcium and chemical looping technology for power generation and carbon dioxide (CO₂) capture: Solid oxygen- and CO₂-carriers

 Paul Fennell and E. J. Anthony
- 44 Materials' ageing and degradation in light water reactors: Mechanisms, and management

 Edited by K. L. Murty
- 45 Structural alloys for power plants: Operational challenges and high-temperature materials

 Edited by Amir Shirzadi and Susan Jackson
- 46 **Biolubricants: Science and technology**Jan C. J. Bart, Emanuele Gucciardi and Stefano Cavallaro
- 47 Advances in wind turbine blade design and materials Edited by Povl Brøndsted and Rogier P. L. Nijssen
- 48 Radioactive waste management and contaminated site clean-up: Processes, technologies and international experience

Edited by William E. Lee, Michael I. Ojovan, Carol M. Jantzen

49 Probabilistic safety assessment for optimum nuclear power plant life management (PLiM): Theory and application of reliability analysis methods for major power plant components

Gennadij V. Arkadov, Alexander F. Getman and Andrei N. Rodionov

- The coal handbook: Towards cleaner production Volume 1: Coal production Edited by Dave Osborne
- The coal handbook: Towards cleaner production Volume 2: Coal utilisation Edited by Dave Osborne
- 52 **The biogas handbook: Science, production and applications** *Edited by Arthur Wellinger, Jerry Murphy and David Baxter*
- 53 Advances in biorefineries: Biomass and waste supply chain exploitation Edited by Keith Waldron
- Geological storage of carbon dioxide (CO₂): Geoscience, technologies, environmental aspects and legal frameworks

Edited by Jon Gluyas and Simon Mathias

55 Handbook of membrane reactors Volume 1: Fundamental materials science, design and optimisation

Edited by Angelo Basile

- 56 Handbook of membrane reactors Volume 2: Reactor types and industrial applications

 Edited by Angelo Basile
- 57 Alternative fuels and advanced vehicle technologies for improved environmental performance: Towards zero carbon transportation

 Edited by Richard Folkson

- 58 Handbook of microalgal bioprocess engineering Christopher Lan and Bei Wang
- 59 Fluidized bed technologies for near-zero emission combustion and gasification Edited by Fabrizio Scala
- 60 Managing nuclear projects: A comprehensive management resource Edited by Jas Devgun
- Handbook of Process Integration (PI): Minimisation of energy and water use, waste and emissions

 Edited by Jiří J. Klemeš
- 62 Coal power plant materials and life assessment Edited by Ahmed Shibli
- 63 Advances in hydrogen production, storage and distribution Edited by Ahmed Basile and Adolfo Iulianelli
- 64 Handbook of small modular nuclear reactors

 Edited by Mario D. Carelli and Dan T. Ingersoll
- 65 Superconductors in the power grid: Materials and applications Edited by Christopher Rey
- Advances in thermal energy storage systems: Methods and applications Edited by Luisa F. Cabeza
- 67 Advances in batteries for medium and large-scale energy storage Edited by Chris Menicias, Maria Skyllas-Kazacos and Tuti Mariana Lim
- 68 Palladium membrane technology for hydrogen production, carbon capture and other applications
 - Edited by Aggelos Doukelis, Kyriakos Panopoulos, Antonios Koumanakos and Emmanouil Kakaras
- 69 Gasification for synthetic fuel production: Fundamentals, processes and applications Edited by Rafael Luque and James G. Speight
- 70 Renewable heating and cooling: Technologies and applications Edited by Gerhard Stryi-Hipp
- 71 Environmental remediation and restoration of contaminated nuclear and NORM sites

Edited by Leo van Velzen

- 72 **Eco-friendly innovation in electricity networks** *Edited by Jean-Luc Bessede*
- 73 The 2011 Fukushima nuclear power plant accident: How and why it happened Yotaro Hatamura, Seiji Abe, Masao Fuchigami and Naoto Kasahara. Translated by Kenji Iino
- 74 Lignocellulose biorefinery engineering: Principles and applications Hongzhang Chen
- 75 Advances in membrane technologies for water treatment: Materials, processes and applications
 - Edited by Angelo Basile, Alfredo Cassano and Navin Rastogi
- Membrane reactors for energy applications and basic chemical production Edited by Angelo Basile, Luisa Di Paola, Faisal Hai and Vincenzo Piemonte
- 77 Pervaporation, vapour permeation and membrane distillation: Principles and applications
 - Edited by Angelo Basile, Alberto Figoli and Mohamed Khayet
- 78 Safe and secure transport and storage of radioactive materials Edited by Ken Sorenson

- 79 Reprocessing and recycling of spent nuclear fuel Edited by Robin Taylor
- 80 Advances in battery technologies for electric vehicles
 Edited by Bruno Scrosati, Juergen Garche and Werner Tillmetz
- 81 Rechargeable lithium batteries: From fundamentals to applications Edited by Alejandro A. Franco
- 82 Calcium and chemical looping technology for power generation and carbon dioxide (CO₂) capture

Edited by Paul Fennell and Ben Anthony

Preface

Carbon capture and sequestration (CCS) are essential technologies if we are not to have to spend ruinously in converting our energy supply in its entirety to renewable sources and to avoid very dangerous rises in average global temperatures. In order for this to happen there must first be the political will, a subject beyond the scope of this book, and the availability of cheap, effective methods of achieving widespread implementation of CCS technology. Low cost, in particular, will make CCS more palatable and hasten its universal adoption.

To this end, there is a continuous effort on the part of the global R&D community to develop cheaper and better methods of carbon capture and sequestration. While amine scrubbing in its various forms still represents the gold standard, and is finally seeing its first full-scale demonstrations, the cost and other aspects of this technology remain problematic. To that end, the use of solids instead of liquids to capture CO₂ and release it in a concentrated form in combustion, gasification, and reforming or to convert hydrocarbon fuels directly to CO₂ and H₂O, thus allowing the production of pure CO₂ streams has become increasingly important.

This book examines two new technologies designed to achieve these ends: Ca looping for CO₂ capture and chemical looping combustion (CLC) for fuel conversion using solid oxygen carriers. Both technologies have been under development by the research community in the last couple of decades and both technologies have now been implemented at the large pilot plant scale (several MWt). While Ca Looping and CLC technologies still await demonstration at the industrial scale, they continue to be explored in several hundred centers worldwide. This book presents these two technologies and demonstrates that both of them represent vibrant areas of research and that both have the potential to significantly advance CCS technology at the industrial and utility level.

P.S. Fennell (Imperial College) E.J. Anthony (Cranfield University)

Contents

List of contributors Woodhead Publishing Series in Energy Preface			
Part tech		to carefully and element looping	1
1		cium and chemical looping technology: an introduction	3
	1,1	Introduction References	3 12
2		rgy and exergy pertaining to solid looping cycles Romeo, P. Lisbona, Y. Lara, A. Martínez	15
	2.1	Introduction	15
	2.2	Energy penalty in capture and conditioning	16
	2.3 2.4	Energy and exergy pertaining to calcium looping (CaL) Energy and exergy pertaining to chemical looping	19
	~ -	combustion (CLC)	25
	2.5	Future trends	30
	2.6	Conclusions References	33 33
3	Economics of chemical and calcium looping P. Fennell		
	3.1	Introduction	39
	3.2	Economics of calcium looping	42
	3.3	Costs of chemical looping	44
	3.4	Conclusions	47
		Acknowledgements	47
		References	47

Part	Two	Fundamentals of calcium looping technology	49		
4	Synt	hetic calcium oxide-based carbon dioxide sorbents for calcium			
	looping processes				
	M. B	Proda, A.M. Kierzkowska, C.R. Müller			
	4.1	Introduction	51		
	4.2	Unsupported CaO	54		
	4.3	Supported CaO	56		
	4.4	Approaches to manipulate the porosity of CaO-based CO ₂			
		sorbents	65		
	4.5	Outlook and conclusions	68		
		References	70		
5	Enha	ancement of natural limestone sorbents for calcium looping			
	•	esses	73		
		amey, J.G. Yao, Y. Arai, P. Fennell			
	5.1	Introduction	73		
	5.2	Reactivation by hydration	75		
	5.3	Reactivation by extended carbonation	84		
	5.4	Reactivation by grinding and repelletization	86		
	5.5	Doping pretreatment	89		
	5.6	Thermal pretreatment	96		
	5.7	Conclusions	100		
		References	101		
6		ium looping reactor design for fluidized-bed systems	107		
		Diego, I. Martínez, M. Alonso, B. Arias, J.C. Abanades			
	6.1	Introduction	107		
	6.2	Main reactors and solid residence-time-distribution curves	108		
	6.3	Basic modelling of the carbonator reactor	112		
	6.4	Basic design of a calciner reactor in fluidized-bed calcium			
		looping systems	120		
	6.5	Other reactor designs in postcombustion calcium looping	125		
	6.6	Conclusions	133		
		References	134		
7		ium looping technologies for gasification and reforming	139		
		lorin, M. Boot-Handford, P. Fennell			
	7.1	Introduction	139		
	7.2	Combined shift and carbonation reactions	139		
	7.3	Sorption-enhanced reforming	144		
	7.4	Gasification of solid fuels	146		
	7.5	ZEC process	147		
	7.6	CaL by pressure-swing and the Endex concept	148		

Contents

	7.7	CaL coupled with CLC	149			
	7.8	Conclusions and observations	150			
		References	151			
8		use of lime-based sorbents from calcium looping systems	153			
		amey, E.J. Anthony				
	8.1	Introduction	153			
	8.2	The scale of spent sorbent production	153			
	8.3	The use of sorbent for cement manufacture	156			
	8.4	Alternative uses of spent sorbent	164			
	8.5	Concluding remarks	167			
		Acknowledgements	167			
		References	167			
9	Pilot	plant experience with calcium looping	171			
	H. D	Dieter, A.R. Bidwe, G. Scheffknecht				
	9.1	Introduction	171			
	9.2	Calcium looping facilities around the world	171			
	9.3	Plant operating experiences	181			
	9.4	Parametric studies in pilot plants	187			
	9.5	Summary	192			
		References	193			
Par	t Thr	ree Fundamentals of chemical looping combustion				
tecl	nolo		195			
10	Fun	damentals of chemical looping combustion and introduction				
		to CLC reactor design				
	<i>T. P</i>					
	10.1	Introduction	197			
	10.2	Fundamentals of chemical looping combustion	198			
	10.3	Chemical looping reactor systems	204			
	10.4	Specific design aspects of chemical looping combustion				
		systems	209			
	10.5	Modelling options for chemical looping combustion systems	213			
	10.6	Industrial application and future trends in chemical looping				
		combustion	214			
		References	216			
		Appendix: list of symbols	218			
11	Oxy	gen carriers for chemical-looping combustion	221			
	A. L	yngfelt				
	11.1	Introduction	221			
	11.2	Range of oxygen-carrier materials	221			

viii			Contents

	11.3	Manufactured oxygen carriers	231
	11.4	Ores and waste materials	239
		Concluding remarks	242
	11.6	Future trends	242
	11.7	Sources of further information and advice	243
		References	243
12	Chen	nical looping combustion of gaseous fuels	255
	J. Add	ánez	
	12.1	Introduction	255
	12.2	Oxygen carriers suitable for gaseous fuels	258
	12.3	Pilot testing for gaseous fuels	265
	12.4	Process modelling and reactor design	273
	12.5	Future trends	278
		Acknowledgements	278
		References	278
13		nical looping combustion of liquid fuels	287
	$M. R_1$		207
	13.1	Introduction	287
		The range of liquid fuels for chemical looping combustion	287
	13.3	Reactor design for chemical looping combustion of	200
		liquid fuels	289 294
	13.4	, .	294 295
	13.5	Future trends	295 296
		References	290
14		nical-looping combustion of solid fuels	299
		nderholm, A. Lyngfelt	299
		Introduction	301
	14.2	Choice of fuel	304
		Oxygen carriers for solid fuels	307
	14.4	Operational experience	314
	14.5	Reactor design and modeling fuel conversion	317
	14.6	Cost and energy penalty	317
	14.7	Conclusions and outlook	321
		References	321
15		nical looping for hydrogen production	327
	A. Al		225
	15.1	Introduction	327
	15.2	Steam reforming integrated with chemical looping	220
		combustion (SR-CLC)	329
	15.3	Auto-thermal chemical looping reforming	335
	15.4	Chemical looping gasification	349