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anomalies in microoptics, invisibility physics, dynamic photonic materials
based on liquid crystals, and subwavelength atom localization. Experimental,
as well as, theoretical researches are reviewed.
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1. INTRODUCTION

Optics and photonics involve material sciences and device technology,
at the basis of displays, computing devices, optical fibers, precision man-
ufacturing, enhanced defense capabilities, and a plethora of medical diag-
nostics tools. Opportunities arising from optics and photonics offer the
potential for an even greater social impact in the next few decades, related
to solar power generation, efficient lighting, and faster internet. Continu-
ously increasing data capacity requirements in telecommunications and in the
next-generation of dynamically reconfigurable networks increases demand
for highly compact, non-mechanical, and high speed optical devices. New
materials exhibiting enhanced optical properties are key to these develop-
ments. In particular, liquid crystals (LCs) have attracted a great deal of atten-
tion in the last three decades. This is due to their capability both to behave as
smart anisotropic materials, exhibiting self-organizing properties along with
fluidity, and to fulfill conditions imposed from outside, due to their respon-
siveness to a wide variety of external perturbations, like AC, DC, and optical
fields (Gennes & Prost, 1995). Indeed, the large birefringence (~0.5) of LCs
allows for the realization of tunable photonic devices for both optical com-
munications and optical sensing systems. LCs and polymers have become an
exciting field of research with practical applications in flat panel displays and
active optical devices. Thanks to achievements obtained in the micro/nano
fabrication processes, such as Intensity and Polarization Holography, Elec-
tron Beam (E-Beam) Lithography, Focused lon Beam (FIB), and Dip-Pen
nanolithography, several composite photonic structures exploiting LCs prop-
erties have been realized. Liquid Crystals are currently playing a significant
role in nanoscience and nanotechnology, too. They can be utilized as bridge
between “hard matter” and “soft matter,” due to the fact that nano-structured
materials do not induce significant distortions of LC phases. Various nano-
materials have been dispersed and studied in LCs to enhance their physical
properties. Furtherntore, alignment and self-assembly of nanoparticles them-
selves can be achieved inside the LC, since it acts as a tunable solvent for the
dispersion of nanomaterials. As an anisotropic medium, it provides a support
for the self-assembly of those materials into large organized structures, even
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in multiple dimensions. Most importantly, in order to exploit the distinctive
characteristics and capabilities of LC technologies, a variety of means for
alignment and confinement of LCs have been investigated and employed. In
this chapter, we review our achievements in the fabrication and characteri-
zation of LC-based photonic devices, underlining, in particular, the “active
way” we utilize to control their properties. The most important aspects and
novelties are highlighted in different sections of the paper. We begin with
an overview of electro-responsive and light sensitive chiral nematic LCs.
We continue by reporting on the optical and electro-optical properties of
holographic structures containing several kinds of LC phases and, finally, we
show how it is possible to exploit and control the plasmonic nanomaterial
properties by means of LCs utilized as active host media.

2. PHOTONIC DEVICES BASED ON CHOLESTERIC LIQUID
CRYSTALS

2.1 Electro-Responsive CLCs
In Cholesteric Liquid Crystals (CLCs), also called chiral nematic LCs, the
molecules are arranged in a helical structure such that in each plane of the

system the directors are aligned (and lay in that plane) and the director
orientation changes progressively along the direction perpendicular to the
planes (such direction, h, constitutes the axis of the helix). If the helix axis
is along z and n is the director orientation, the angle 6 between n and a
reference direction in the xy plane can be expressed as follows:

0 = (27/P)z, (1.1)

where the parameter P is the pitch of the helix, that is the distance along
h over which the orientation of the molecules rotates by 2z. In each xy
plane (constant z) the system only has orientational order but no trans-
lational order. Because of the periodicity in the director orientation in z,
CLCs behave as one-dimensional photonic bandgap system and propagation
of light of certain wavelengths and polarizations states is forbidden (Blinov,
1983; Yeh & Gu, 1999). In particular, for a CLC system in a planar state
(h || z, perpendicular to the plane of the cell, xy) and at normal incidence
(k || es, where k is the propagation wavevector of the light beam), cir-
cularly polarized light of wavelength between n,P and #n.P (1, and n, are
the ordinary and extraordinary refractive indices of the material, respec-
tively) with the same handedness as the helix is reflected by the CLC layer,
while the opposite sense of circular polarization propagates through the CLC
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Figure 1 Transmission spectrum of a CLC cell (80% E7, 20% R811) at normal incidence:
sample in the planar homogeneous state with Ao = 825 nm, no field applied (blue line);
sample in a focal conic state at E = 1.5 V/jum (green line); sample in the homeotropic
stateat £ = 5 V/um (red line). All field square waves at 1 kHz. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
book.)

unaffected. For unpolarized light, an ideal sample reflects 50% of the light
and transmits the remaining 50% in the wavelength range n,P < A < n.P,
whereas the sample is transparent outside this range (Figure 1,blue line). The
center of the reflection band occurs at:

Ao = (n)P, (1.2)

where (n) is the average refractive index, (n) = (n.4#,)/2 and the bandwidth
is given by:
AL = AuP = (n. — n,)P. (1.3)

Because of the dielectric anisotropy of the material, the director orienta-
tion of the liquid crystals can change in the presence of an electric field, and
this effect has been used to design various types of electro-responsive devices
based on CLCs. For a CLC with a positive dielectric anisotropy (Ag > 0),
the helical structure is not stable when an electric field is applied parallel to
the helical axis (E || h) (Blinov, 1983). When an electric field is first applied
to a planar aligned (homogeneous) CLC cell, the sample becomes scattering
at a field above a critical value. The axis of the helix becomes tilted (from
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the original normal condition) and the sample assumes a multi-domain focal
conic texture (Figure 1, green line), which does not transmit light. When the
field is further increased above a second critical value, the helical arrangement
of the molecules is destroyed and molecules (and overall director) become
aligned parallel to the field direction (perpendicular to the cell). The sample
becomes transparent (Figure 1,red line) and the large change from a reflective
to transparent state by field is the basis for numerous display-related appli-
cations. However, upon removal of the field, recovery of the initial reflec-
tive state can be very slow and in many cases the samplé remains trapped
in the disordered focal conic texture (scattering state), limiting the utility
of the system for practical applications. Two major approaches have been
explored to overcome this shortcoming. The first, the use of dual frequency
LCs, utilizes an applied field to drive alignment in both directions enabling
fast switching between the transparent and reflective conditions (Xu & Yang,
1997). In these materials, the sign of the dielectric anisotropy depends on the
electric field frequency (Biicher, Klingbiel, & VanMeter, 1974; De Jeu, Ger-
ritsma,Van Zanten, & Goossens, 1972). Below a crossover frequency, Ag >0,
and a homogeneous cell can be switched from the planar (reflective) to the
homeotropic (transparent) state. For frequencies above the crossover point,
le < 0,an applied field will reorient the LC molecules from a homeotropic
(transparent) orientation back to parallel (to the plane of the cell), facilitating
the restoration of the standing helical structure. Thus, toggling between fre-
quencies, with an applied field in both cases, will enable switching between
the reflective and transparent states. Switch-off times on the order of 100 ms
have been achieved using this type of material (Xu & Yang, 1997). Dual fre-
quency CLCs have also been used to fabricate fast-switchable devices that
operate between the reflective and scattering states (Gerber, 1984; Hsiao,
Tang, & Lee, 2011). The shortfalls to this approach are specialty materi-
als whose electro-optical properties are very sensitive to temperature and
complex drive schemes. The second approach for increasing speed has been
incorporating a loose polymer network within the CLC cells. Shorten-
ing of the recovery time by several orders of magnitude has been demon-
strated (Beckel, Natarajan, Tondiglia, Sutherland, & Bunning, 2007; Hikmet,
1998; Sathaye, Dupont, & de Bougrenet de la Tocnaye, 2012). Typically, the
cell is fabricated with a mixture of photopolymerizable monomers which
are then polymerized using light after initial fabrication of a specific cell
design (typically planar homogeneous). These systems are generally referred
to as polymer-stabilized CLCs (PSCLCs). Figure 2 shows the transmission
spectrum as a function of applied voltage for a PSCLC reported by Hikmet



6 Luciano De Sio et al.

Transmittance

M0 TR0 BX

0
<00

450 800 550 &0 &0
Luciano De Sio et. al anEIength (hm)

Figure 2 Transmission spectra as a function of applied voltage for a PSCLC system
containing the monoacrylate monomer shown in the inset and a small amount of
diacrylate shown above the spectra. Reproduced from Hikmet and Kemperman (1998).

and Kemperman (1998), which was fabricated using UV irradiation. The dip
in the transmission spectrum (corresponding to the reflection band of the
CLC system) initially shifts to shorter wavelength when a voltage of 40-50V
isapplied (the blue-shiftis due to tilting of the helix axis), but the system is still
highly transparent in the rest of the spectrum. At 60V, the sample is brought
into a homeotropic state and becomes transparent. Because of the presence
of the polymer network, the planar homogeneous configuration can be fully
recovered upon removal of voltage with switching-off times as short as a few
ms (Beckel et al., 2007; Hikmet & Kemperman, 1998). The recovery time
depends on the pitch and elastic constant of the liquid crystal as well as on
the content of diacrylate monomer in the initial mixture. Quicker response
times are typically observed for larger contents of diacrylate monomers and
thus higher crosslinking density (Beckel et al., 2007; Guillard, Sixou, Reboul,
& Perichaud, 2001; Hikmet & Kemperman, 1999). The polymer network,
however, cannot be too dense and rigid, otherwise the strength of the inter-
action between the free liquid crystal molecules and the polymer network
overcomes that of the field-induced reorientation and the system is no longer
switchable. One drawback is that the switch-on time and voltage for the
transition from the reflective to the transparent regime are typically larger in
PSCLCs than in CLCs without polymer network (Hikmet & Kemperman,
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1999). Polymer stabilization has also been used to achieve broader reflec-
tion bands (Broer, Lub, & Mol, 1995; Broer, Mol, van Haaren, & Lub, 1999;
Hikmet & Kemperman, 1998) and to reduce the temperature dependence
of the pitch. It has also been utilized to fabricate reflective reverse-mode sys-
tems which offer a much higher contrast ratio and lower operating voltages
than the typical transmissive systems (Ren & Wu, 2002).

In the cases discussed above, the pitch length and thus the position of the
reflection band was determined by the composition of the CLC system and
was not significantly affected by the field when E || h (apart from a small
blue-shift in the band position that can be seen in some cases at low field and
corresponds to a tilt of h, but not changes in the pitch itself). A wider range of
applications would be accessible if the reflection band could be tuned rather
than just switched reversibly in different regions of the spectrum. Phototun-
able changes in the helical twist power and birefringence are discussed else-
where in this article. A few electro-responsive tuning architectures have been
explored and are discussed below. The development of full color (e.g., red,
green, and blue), addressable CLC reflectors to decrease the complexity of
stacked red—green—blue CLC pixels for full color displays has been the major
driver behind exploration of tunable CLC’s. If an electric field is applied per-
pendicular to the helical axis (E L h) of a CLC with a positive dielectric
anisotropy (Ag > 0), the helical structure is deformed and the director of the
liquid crystal molecules undergoes a partial reorientation toward the field
direction, resulting in a elongation of the pitch [the dependence of € on z is
no longer described by Equation (1.1)] (Blinov, 1983; Meyer, 1968). If the
CLC is in a planar homogeneous state, at normal incidence, this results in a
shift of the reflection band toward longer wavelengths (Figure 3) (Li, Desai,
Akins,Ventouris, & Voloschenko, 2002; Xianyu, Faris, & Crawford, 2004). In
this device configuration, an electric field with the appropriate orientation
(in-plane field) is often achieved using a pattern of interdigitated electrodes
on one of the cell substrates. The red-shift in band position increases with an
increase in field strength until the limiting value in field strength for which
the helix is completely unwound (infinite pitch, homogenous alignment
with n || E), the reflection band disappears, and the sample becomes trans-
parent under unpolarized light (the sample is a uniaxial birefringent slab).
Shifts on the order of 300 nm for systems with reflection band in the visible
have been achieved based on this approach (Li et al., 2002). Relatively fast
response times (on the order of ms) have been reported for this process
(Li et al., 2002), even without polymer stabilization. However, depend-
ing on the target application, the use of interdigitated electrodes may pose



