SECOND EDITION

Molecular Genetics of Bacteria

Larry Snyder and Wendy Champness

SECOND EDITION

Molecular Genetics of Bacteria

Larry Snyder and Wendy Champness

Department of Microbiology and Molecular Genetics Michigan State University East Lansing, Michigan

Cover photograph (courtesy of Richard Losick and Masaya Fujita, Department of Molecular and Cellular Biology, Harvard University) illustrates the cellular localization of a Bacillus subtilis sporulation-specific transcription factor, σ^E , as visualized with protein fusions to the "green fluorescent protein." Pro- σ^E first localizes to the septal and cytoplasmic membranes of sporulating cells at the stage of polar septation as shown in the cells on the right side of the insert. To the left, the mature σ^E is present in the cytoplasm in the large chamber of the sporangium, where it directs mother-cell-specific transcription.

Address editorial correspondence to ASM Press, 1752 N St. NW, Washington, DC 20036-2904, USA

Send orders to ASM Press, P.O. Box 605, Herndon, VA 20172, USA

Phone: 800-546-2416; 703-661-1593

Fax: 703-661-1501 E-mail: books@asmusa.org Online: www.asmpress.org

Copyright © 2003 ASM Press

American Society for Microbiology

1752 N St. NW

Washington, DC 20036-2904

Library of Congress Cataloging-in-Publication Data

Snyder, Larry.

Molecular genetics of bacteria / Larry Snyder and Wendy Champness.—2nd ed.

Includes bibliographical references and index.

ISBN 1-55581-204-X (hardcover)

1. Bacterial genetics. 2. Bacteriophage—Genetics. 3. Molecular genetics. I. Champness, Wendy. II. Title.

QH434.S59 2002 572.8'293—dc21

2002018697

10 9 8 7 6 5 4 3 2 1

All rights reserved Printed in the United States of America

Cover and interior design: Susan Brown Schmidler

Cover illustration: Terese Winslow

Molecular Genetics of Bacteria

Preface

We were motivated to prepare a second edition of our textbook Molecular Genetics of Bacteria because of the favorable response to the first edition and because of the important advances made in this field since the original edition was published. The second edition retains much of the organization and style of the first edition. The order of topics is unchanged as is the emphasis on experimental approaches: features popular with most instructors using the first edition. Each chapter retains a chapter summary, problems (with answers), and suggested readings, all of which are updated. We continue to use "boxes" to present material of related interest to each topic without breaking the continuity of the narrative. The material in these boxes can serve as a starting point for special reports or to link with material from other courses that the students might be taking. One change in the organization of the second edition is that much of the material in the last four chapters of the first edition, which presented some more sophisticated experiments and some current applications, has been updated and incorporated into the earlier chapters. As a result, the chapters usually begin with a descriptive treatment of each topic and end with some relatively technical molecular genetic experiments that led to the knowledge. This organization allows instructors to assign only early sections of each chapter if appropriate but retains the usefulness of the textbook for more advanced undergraduate and beginning graduate classes. This allows the book to be more concise since each subject need be introduced only once. We added a final chapter that illustrates comprehensively how the techniques and concepts of bacterial molecular genetics discussed in earlier chapters have been used to study biological phenomena such as protein translocation and sporulation.

The material in each chapter is substantially updated and reflects the exciting developments in the field of bacterial molecular genetics and emphasizes the relationships of prokaryotic and eukaryotic cell biology and

development. In particular, important progress has been made since the first edition in understanding chromosome segregation and cell division in bacteria; the close relationship of protein secretion and conjugation both between bacteria and from bacteria into eukaryotes; the intimate relationship between the "three Rs"—replication, recombination, and repair; the universality of repair mechanisms and mutagenic DNA polymerases and their roles in cancer; the techniques of genomics, microarrays, and bioinformatics and their applications in bacterial molecular genetics; as well as many other important updates. With these changes, the textbook will continue to provide an appropriate up-to-date treatment of bacterial molecular genetics for undergraduate and beginning graduate courses and will also continue to provide a good foundation and reference guide for scientists in the many fields of biology and engineering who depend on the concepts and techniques developed with prokaryotes.

An extraordinary number of researchers have made major contributions to the field of bacterial molecular genetics. We could not reasonably expect students to learn even a fraction of their names, and we could not possibly do justice to all of their important contributions. Therefore, we include only those names that have become icons in the field because they are associated with certain seminal experiments (e.g., Meselson and Stahl or Luria and Delbrück), models (e.g., Jacob and Monod), or a structure (e.g., Watson and Crick). We redress our omissions somewhat in the suggested readings, where we give some of the original references to the developments under discussion.

In writing the second edition, we have benefited from the help and advice of a large number of colleagues around the world. Many instructors using the first edition pointed out errors and communicated advice. Many additional colleagues generously read or discussed material in their areas of specialty. We would particularly like to thank our colleague at Michigan State University, Lee Kroos, for his careful reading of the new *Bacillus subtilis* sporulation section. We also benefited from the input of many of our own undergraduates, who used the first edition in our classes. We especially thank Andrea Hartlerode and Heather Hall, who pointed out areas they found confusing or in need of additional explanation. However, we take full responsibility for any mistakes, misconceptions, or omissions.

As before, it was a great pleasure to work with the professionals at ASM Press, who repeated their magic act of transforming our primitive text and illustrations into a printed book. For the first edition, as neophyte authors, we depended on the expert advice of the former director of ASM Press, Patrick Fitzgerald. In preparing the second edition, we have been indebted to the current director, Jeff Holtmeier, for his encouragement, enthusiasm, and patience. We have also had the good fortune to work again with a number of the same professionals who did a masterful job with the first edition, including Susan Birch, Production Manager, who oversaw the entire process; Yvonne Strong, who copyedited the manuscript and illustrations; Susan Brown Schmidler, who created the book and cover design; and Terese Winslow, who created the cover illustration. Finally, we especially thank Berta Steiner, president of Bermedica Production, Ltd., who managed this publication project and supervised the work of Precision Graphics artists who rendered our hand-drawn sketches into clear attractive figures.

Contents

Boxes xiii Preface xv

Introduction 1

The Biological Universe 2

The Eubacteria 2
The Archaea 4
The Eukaryotes 4
The Prokaryotes and the Eukaryotes 4

What Is Genetics? 5

Bacterial Genetics 5

Bacteria Are Haploid 5
Short Generation Times 5
Asexual Reproduction 6
Colony Growth on Agar Plates 6
Colony Purification 6
Serial Dilutions 6
Selections 6
Storing Stocks of Bacterial Strains 6
Genetic Exchange 7

Phage Genetics 7

Phages Are Haploid 7
Selections with Phages 7
Crosses with Phages 7

A Brief History of Bacterial Molecular Genetics 7

Inheritance in Bacteria 8
Transformation 8
Conjugation 8
Transduction 8
Recombination within Genes 8
Semiconservative DNA Replication 9
mRNA 9
Genetic Code 9
The Operon Model 9
Enzymes for Molecular Biology 9

What's Ahead 9

SUGGESTED READING 10

PART

Genes: Replication and Expression 11

CHAPTER 1

Macromolecular Synthesis: Chromosome Structure, Replication, and Segregation 13

DNA Structure 13

The Deoxyribonucleotides 13
The DNA Chain 14
The 5' and 3' Ends 14
Base Pairing 14
Antiparallel Construction 16
The Major and Minor Grooves 16

Mechanism of DNA Replication 17

Deoxyribonucleotide Precursor Synthesis 17
Deoxynucleotide Polymerization 17
Semiconservative Replication 19
Replication of Double-Stranded DNA 21

Replication Errors 24

Editing 26
Methyl-Directed Mismatch Repair 27
Role of Editing and Mismatch Repair
in Maintaining Replication Fidelity 27

Replication of the Bacterial Chromosome and Cell Division 28

Structure of the Bacterial Chromosome 28 Replication of the Bacterial Chromosome 29 Initiation of Chromosome Replication 29 Termination of Chromosome Replication 30
Segregation of the Two Daughter DNAs after Replication 32
Partitioning of the Chromosome after Replication 33
Where Are the Replication Forks? 37
Cell Division 37
Coordination of Cell Division with Replication of the Chromosome 38
Timing of Initiation of Replication 40

Supercoiling 41

The Bacterial Nucleoid 41
Supercoiling in the Nucleoid 42
Topoisomerases 43

Antibiotics That Affect Replication and DNA Structure 45

Antibiotics That Block Precursor Synthesis 45
Antibiotics That Block Polymerization of Nucleotides 45
Antibiotics That Affect DNA Structure 46
Antibiotics That Affect Gyrase 46

Molecular Biology Manipulations with DNA 46

Restriction Endonucleases 46
Hybridizations 49
Applications of the Enzymes Used in DNA Replication 52
SUMMARY 58
QUESTIONS FOR THOUGHT 59
PROBLEMS 59
SUGGESTED READING 60

CHAPTER 2

Macromolecular Synthesis: Gene Expression 61

Overview 61

The Structure and Function of RNA 62

Types of RNA 62
RNA Precursors 62
RNA Structure 63
RNA Processing and Modification 65

Transcription 65

Bacterial RNA Polymerase 65
Transcription Initiation 65
The Polymerization Reaction 68
Transcription Termination 70
rRNAs and tRNAs and Their Synthesis 72

Proteins 73

Protein Structure 73
Translation 75
Details of Protein Synthesis 75
The Genetic Code 81
Translation Initiation 83
Translation Termination 86
Polycistronic mRNA 86

Protein Folding 89

Chaperones 89
Membrane Proteins and Protein Export 91
The Targeting Factors 91
Protein Secretion 93
Disulfide Bonds 94
Regulation of Gene Expression 94

Useful Concepts 97

Open Reading Frame 99
Transcriptional and Translational Fusions 100

Antibiotics That Block Transcription and Translation 102

Antibiotic Inhibitors of Transcription 102
Antibiotic Inhibitors of Translation 103
SUMMARY 106
QUESTIONS FOR THOUGHT 108
PROBLEMS 108
SUGGESTED READING 109

PART II

Genes and Genetic Elements 111

CHAPTER 3

Mutations and Genetic Analysis 113

Definitions 113

Terms Used in Genetics 113 Genetic Names 114

Useful Phenotypes in Bacterial Genetics 115

Auxotrophic Mutants 115 Conditional Lethal Mutants 116 Resistant Mutants 117

Inheritance in Bacteria 117

The Luria and Delbrück Experiment 118
The Newcombe Experiment 121
The Lederbergs' Experiment 123

Mutation Rates 123

Calculating Mutation Rates 123
Using the Increase in the Fraction of Mutants
To Measure Mutation Rates 125
Summary 126

Types of Mutations 126

Base Pair Changes 127
Frameshift Mutations 131
Deletion Mutations 132
Inversion Mutations 133
Tandem Duplication Mutations 135
Insertion Mutations 135

Reversion versus Suppression 136

Intragenic Suppressors 136 Intergenic Suppressors 136 Nonsense Suppressors 137

Genetic Analysis 139

Isolating Mutants 140
Isolating Independent Mutations 140
Selecting Mutants 141
Replica Plating 142
Enrichment 142
Complementation 143
Recombination Tests 145
Gene Replacements and Transgenics 148
SUMMARY 154
QUESTIONS FOR THOUGHT 155
PROBLEMS 155
SUGGESTED READING 156

CHAPTER 4

Plasmids 157

What Is a Plasmid? 157

Naming Plasmids 157 Functions Encoded by Plasmids 159 Plasmid Structure 159

Properties of Plasmids 161

Replication 161
Functions of the *ori* Region 165
Mechanisms To Prevent Curing of Plasmids 172
The *par* Systems 174
Incompatibility 176
Maintaining Plasmids Belonging to the Same Incompatibility Group 178

Constructing a Plasmid Cloning Vector 179

Finding the Plasmid *ori* Region 179
Examples of Plasmid Cloning Vectors 18
Broad-Host-Range Cloning Vectors 183
SUMMARY 184
QUESTIONS FOR THOUGHT 185
PROBLEMS 185
SUGGESTED READING 185

CHAPTER 5

Conjugation 187

Overview 187

Classification of Self-Transmissible Plasmids 188 Interspecies Transfer of Plasmids 188

Mechanism of DNA Transfer during Conjugation in Gram-Negative Bacteria 189

Transfer (tra) Genes 192
The oriT Sequence 197
Efficiency of Transfer 197
Mobilizable Plasmids 198

Chromosome Transfer by Plasmids 201

Formation of Hfr Strains 202
Transfer of Chromosomal DNA by Integrated Plasmids 202

Genetic Mapping with Hfr Crosses 204

Genetic Markers 204 Analysis of Hfr Crosses 205

Chromosome Mobilization 207

Prime Factors 207

Creation of Prime Factors 208 Complementation Tests Using Prime Factors 208 Role of Prime Factors in Evolution 210

Transfer Systems of Gram-Positive Bacteria 210

Plasmid-Attracting Pheromones 210
Other Types of Transmissible Elements 214
SUMMARY 214
QUESTIONS FOR THOUGHT 215
PROBLEMS 215
SUGGESTED READING 216

CHAPTER 6

Transformation 217

Natural Transformation 217

Discovery of Transformation 218

Competence 218

Uptake of DNA during Natural Transformation 221

Mechanism of DNA Uptake
during Transformation 222

Genetic Evidence for Single-Strand Uptake 223

Plasmid Transformation and Transfection
of Naturally Competent Bacteria 223

The Role of Natural Transformation 224

Artificially Induced Competence 226

Calcium Ion Induction 226
Electroporation 228
SUMMARY 228
QUESTIONS FOR THOUGHT 229
PROBLEMS 229
SUGGESTED READING 229

CHAPTER 7

Lytic Bacteriophages: Genetic Analysis and Use in Transduction 231

Bacteriophage Lytic Development Cycle 233

Phage T7: a Phage-Encoded RNA Polymerase 234
Phage T4: Transcriptional Activators, Antitermination,
a New Sigma Factor, and Replication-Coupled
Transcription 237

Phage DNA Replication 242

Phages with Single-Stranded Circular DNA 243
Phage T7: Linear DNA
That Forms Concatemers 249
Phage T4: Another Linear DNA
That Forms Concatemers 250

Genetic Analysis of Phages 252

Infection of Cells 253
Phage Crosses 253
Recombination and Complementation
Tests with Phages 254
Experiments with the *r*II Genes of Phage T4 256
Constructing the Genetic Linkage Map
of a Phage 263

Generalized Transduction 267

What Makes a Transducing Phage? 268
Mapping of Bacterial Markers by Transduction 269
The Role of Transduction in Bacterial Evolution 272
SUMMARY 272
QUESTIONS FOR THOUGHT 273
PROBLEMS 273
SUGGESTED READING 274

CHAPTER 8

Phage λ and Lysogeny 275

Phage λ 276

Phage λ : Lytic Development 276 Phage λ : Linear DNA That Replicates as a Circle 281

Lysogeny 282

The cll Gene Product 282 Phage λ Integration 283 Maintenance of Lysogeny 285 Regulation of Repressor Synthesis in the Lysogenic State 285 Immunity to Superinfection 286 The Induction of λ 286 Competition between the Lytic and Lysogenic Cycles 287

Specialized Transduction 290

Other Lysogenic Phages 291

Phage P2 291
Phage P4 291
Phage P1: a Plasmid Prophage 293
Phage Mu 294
Use of Lysogenic Phages as Cloning Vectors 294

Lysogenic Phages and Bacterial Pathogenesis 294

E. coli and Dysentery: Shiga Toxins 294
Diphtheria 295
Cholera 295
Botulism and Tetanus 296
Synopsis 296

Genetic Experiments with Phage λ 296

Genetics of λ Lysogeny 296 Genetics of the CI Repressor 297 Isolation of λ *nut* Mutations 297 Isolation of Host *nus* Mutations 300 SUMMARY 300

QUESTIONS FOR THOUGHT 301

PROBLEMS 302

SUGGESTED READING 302

CHAPTER 9

Transposition and Site-Specific Recombination 303

Transposition 303

Overview of Transposition 304
Structure of Bacterial Transposons 304
Types of Bacterial Transposons 305
Assays of Transposition 308
Genetic Requirements for Transposition 310
Molecular Models for Transposition 314

Transposon Mutagenesis 319

Transposon Mutagenesis of Plasmids 320
Transposon Mutagenesis
of the Bacterial Chromosome 325
Transposon Mutagenesis of All Bacteria 328
Using Transposon Mutagenesis To Make Random
Gene Fusions 329
In Vivo Cloning 332

Site-Specific Recombination 333

Developmentally Regulated Excision of Intervening DNA 333 Integrases 334 Resolvases 336 DNA Invertases 336 Topoisomerases 338 SUMMARY 338 QUESTIONS FOR THOUGHT 339 PROBLEMS 339 SUGGESTED READING 340

PART III

Genes in Action 341

CHAPTER 10

Molecular Basis of Recombination 343

Overview of Recombination 344

Requirement 1: Identical or Very Similar Sequences in the Crossover Region 344

Requirement 2: Complementary Base Pairing between Double-Stranded DNA Molecules 344 Requirement 3: Recombination Enzymes 344 Requirement 4: Heteroduplex Formation 345

Molecular Models of Recombination 345

The Holliday Double-Strand Invasion Model 345 Single-Strand Invasion Model 346 Double-Strand Break Repair Model 347

Molecular Basis for Recombination in *E. coli* 349

chi (χ) Sites and the RecBCD Nuclease 349
 The RecF Pathway 352
 Synapse Formation and the RecA Protein 353
 The Ruv and RecG Proteins and the Migration and Cutting of Holliday Junctions 354

Phage Recombination Pathways 358

Rec Proteins of Phages T4 and T7 358The RecE Pathway of the rac Prophage 358The Phage λ red System 358

Genetic Analysis of Recombination in Bacteria 358

Isolating Rec⁻ Mutants of *E. coli* 358
Other Recombination Genes 362
Gene Conversion and Other Manifestations of Heteroduplex Formation during Recombination 364

SUMMARY 366
QUESTIONS FOR THOUGHT 367
PROBLEMS 367
SUGGESTED READING 368

CHAPTER 11

DNA Repair and Mutagenesis 369

Evidence for DNA Repair 370

Specific Repair Pathways 371

Deamination of Bases 371
Damage Due to Reactive Oxygen 374
Alkylation 377
Pyrimidine Dimers 379

General Repair Mechanisms 380

The Methyl-Directed Mismatch Repair System 380 Nucleotide Excision Repair 385 Recombination Repair 387 SOS Inducible Repair 389 Other *din* Genes 395

Summary of Repair Pathways in E. coli 396

Bacteriophage Repair Pathways 396

Genetic Analysis of Repair Pathways 398

SUMMARY 400
QUESTIONS FOR THOUGHT 401
PROBLEMS 401
SUGGESTED READING 402

CHAPTER 12

Regulation of Gene Expression 403

Transcriptional Regulation in Bacteria 404

Genetic Evidence for Negative and Positive Regulation 404

Negative Regulation 406

The *E. coli lac* Operon 406
The *E. coli gal* Operon 412
Regulation of Biosynthetic Operons: Aporepressors and Corepressors 416

Positive Regulation 418

The *E. coli* L-*ara* Operon 418

The *E. coli* Maltose Operons 422

The *tol* Operons 424

Regulation by Attenuation of Transcription 426

Genetic Evidence for Attenuation 429

Feedback Inhibition 432

Tryptophan Operon 432
Isoleucine-Valine Operon 432
SUMMARY 432
QUESTIONS FOR THOUGHT 433
PROBLEMS 433
SUGGESTED READING 434

CHAPTER 13

Global Regulatory Mechanisms 435

Catabolite-Sensitive Operons 436

cAMP and the cAMP-Binding Protein 436 Genetic Analysis of Catabolite Regulation in *E. coli* 440 Uses of cAMP in Other Organisms 442

Regulation of Nitrogen Assimilation 442

Pathways for Nitrogen Assimilation 444
Coordination of Catabolite Repression,
the Ntr System, and the Regulation of Amino Acid
Degradative Operons 453
Genetic Analysis of Nitrogen Regulation

Genetic Analysis of Nitrogen Regulation in Enteric Bacteria 453

Regulation of Porin Synthesis 454

Genetic Analysis of Porin Regulation 455

Regulation of Virulence Genes in Pathogenic Bacteria 457

Diphtheria 459 Cholera 460 Whooping Cough 463

The Heat Shock Regulon 464

Heat Shock Response in *E. coli* 465 Genetic Analysis of the *E. coli* Heat Shock Regulon 465 Regulation of σ^{32} Synthesis 465

Regulation of Ribosome and tRNA Synthesis 467

Ribosomal Proteins 468 rRNA and tRNA Regulation 470

Microarray and Proteomic Analysis of Regulatory Networks 474

From Genes to Regulons to Networks to Genetic Analysis 474 SUMMARY 475

PROBLEMS 476
SUGGESTED READING 477

QUESTIONS FOR THOUGHT 476

PART IV

Genes in Practice 479

CHAPTER 14

Molecular Genetic Analysis in Bacteria 481

The lacl Gene of Escherichia coli 482

Isolating Deletions into *lacl* Gene 482
Isolation of *lacl* Missense Mutations 483
Mapping of the *lacl* Missense Mutations 483

Isolation of Tandem Duplications of the *his* Operon in *Salmonella enterica* Serovar Typhimurium 484

A *recA* Mutation Helps Stabilize the Duplications 486
Determination of the Length of Tandem
Duplications 486
Frequency of Spontaneous Duplications 487

Analysis of Protein Transport in E. coli 487

Use of the *mal* Genes To Study Protein Transport: Signal Sequences; *sec*; and SRP 487

Genetic Analysis of Transmembrane Domains of Inner Membrane Proteins 490

Identification of Genes for Transported Proteins by Random *phoA* Fusions 491

Replication Control of ColE1-Derived Plasmids 491

Mutations That Prevent Interaction of RNA I and RNA II 493 Mutations That Change the Inc Group 493

Identification and Mapping of the *tra* Genes on a Plasmid 494

Isolation of *tra* Mutant Plasmids 494 Complementation Tests To Determine the Number of *tra* Genes 495

Genetic Analysis of Sporulation in *Bacillus* subtilis 496

Identification of Genes That Regulate Sporulation 498
Regulation of Initiation of Sporulation 498
Compartmentalized Regulation
of Sporulation Genes 500
Analysis of the Role of Sigma Factors
in Sporulation Regulation 501
Intercompartmental Regulation
during Development 503

Finding Sporulation Genes: Mutant Hunts, Suppressor Analysis, and Functional Genomics 508

PROBLEMS 509

SUGGESTED READING 509

Answers to Questions for Thought and Problems 511

Glossary 523 Index 549

Boxes

	29	Bacteria	-	in	nromosomes	Ch	inear	.1	1
--	----	----------	---	----	------------	----	-------	----	---

- 1.2 Restarting Replication Forks 33
- **1.3** The Oscillation of Proteins Involved in Partitioning and Cell Division 36
- 1.4 Bacterial Genomics 54
- 2.1 RNA Editing: If You Don't Get It Right the First Time 64
- 2.2 Parasitic DNAs: RNA Introns and Protein Inteins 66
- **2.3** Traffic Jams on mRNA: Removing Stalled Ribosomes with tmRNA 76
- 2.4 Exceptions to the Code 77
- 2.5 Molecular Phylogeny 87
- 2.6 Type III Secretion Systems and Bacterial Pathogenesis 95
- 3.1 Statistical Analysis of the Number of Mutants per Culture 121
- 3.2 Inversions and the Genetic Map 134
- 4.1 Plasmids and Bacterial Pathogenesis 158
- 4.2 Linear Plasmids 159
- 4.3 Plasmid Addiction 172
- 5.1 Gene Exchange between Kingdoms 189
- 5.2 Conjugation and Type IV Protein Secretion Systems 194
- 5.3 Conjugation in Streptomycetes 211
- 6.1 Antigenic Variation in Neisseria gonorrhoeae 227

- **7.1** RNA Phages 235
- 7.2 Protein Priming 236
- 7.3 Phage Display 238
- **8.1** Phages That Integrate into Essential Genes of the Host 284
- 8.2 Retroregulation 288
- 8.3 How a Pathogenicity Island Gets Around 293
- 9.1 Phage Mu: a Transposon Masquerading as a Phage 322
- 9.2 Conjugative Transposons 326
- 9.3 Transposon Mutagenesis In Vitro 331
- **10.1** Breaking and Entering: Some Introns and Inteins Move by Double-Strand Break Repair 348
- **10.2** The Three "R"s: Recombination, Replication, and Repair 350
- 10.3 Gene Replacements in *E. coli* with Phage λ Recombination Functions 359
- 11.1 Oxygen: the Enemy Within 374
- 11.2 Cancer and Mismatch Repair 385
- 11.3 Transcription-Repair Coupling 387
- **11.4** The Ames Test 395
- 11.5 Translesion Synthesis and Cancer 396
- 12.1 The Helix-Turn-Helix Motif of DNA-Binding Proteins 405
- **12.2** Families of Activators 419
- **12.3** Regulation by Attenuation: the Aminoacyl-tRNA Synthetase Genes and the *trp* Operon of *Bacillus subtilis* 427
- 13.1 cAMP-Independent Catabolite Repression 443
- 13.2 Nitrogen Fixation 444
- 13.3 Sensor-Response Regulator Two-Component Systems 446
- **13.4** The Alternate Sigma Factor σ^{54} : the Nitrogen Sigma 450
- 13.5 Regulatory RNAs 458

The Biological Universe 2

The Eubacteria 2
The Archaea 4
The Eukaryotes 4
The Prokaryotes and the Eukaryotes 4

What Is Genetics? 5

Bacterial Genetics 5

Bacteria Are Haploid 5

Short Generation Times 5

Asexual Reproduction 6

Colony Growth on Agar Plates 6

Colony Purification 6

Serial Dilutions 6

Selections 6

Storing Stocks of Bacterial Strains 6

Genetic Exchange 7

Phage Genetics 7

Phages Are Haploid 7

Selections with Phages 7

Crosses with Phages 7

A Brief History of Bacterial Molecular Genetics 7

Inheritance in Bacteria 8

Transformation 8

Conjugation 8

Transduction 8

Recombination within Genes 8

Semiconservative DNA Replication 9

mRNA 9

Genetic Code 9

The Operon Model 9

Enzymes for Molecular Biology 9

What's Ahead 9

Introduction

THE GOAL OF THIS TEXTBOOK is to introduce the student to the field of bacterial molecular genetics. Bacteria are relatively simple organisms, and some are quite easy to manipulate in the laboratory. For these reasons, many methods in molecular biology and recombinant DNA technology have been developed around bacteria, and these organisms often serve as model systems for understanding cellular functions and developmental processes in more complex organisms. Much of what we know about the basic molecular mechanisms in cells, such as translation and replication, has originated with studies in bacteria. This is because such central cellular functions have remained largely unchanged throughout evolution. Ribosomes have a similar structure in all organisms, and many of the translation factors are highly conserved. The DNA replication apparatus of all organisms contains features in common such as sliding clamps and editing functions, which were first described in bacteria and their phages. Chaperones that help other proteins fold and topoisomerases that change the topology of DNA were first discovered in bacteria and phages. Studies of repair of DNA damage and mutagenesis in bacteria have also led the way to an understanding of such pathways in eukaryotes. Excision repair systems, mutagenic polymerases, and mismatch repair systems are similar in all organisms and have recently been implicated in some types of human cancers.

Also, recent evidence indicates that the cell biology of bacteria might be much more complex and more like that of eukaryotes than previously believed. For a long time it has been possible to observe the seemingly purposeful movement of constituents on the cytoskeleton within eukaryotic cells. However, bacterial cells, being much smaller, were thought to be merely "bags of enzymes" and to rely on mere diffusion to move their cellular constituents around. Now new technologies make it possible to observe movement within bacterial cells, revealing, for example, that some proteins

involved in cell division and partitioning oscillate from one end of the cell to the other during the cell cycle (see chapter 1). Bacteria even have proteins related to the proteins of the cytoskeleton, including a cell division protein called FtsZ, which is similar structurally to the tubulins that make up microtubules, and a protein called MreB, which helps give bacterial cells their structure and forms filaments like actin (see Jones et al., and van den Ent et al., Suggested Reading). It has been speculated that we might be entering another stage in biology similar to the early days of molecular genetics, when studies with bacteria led the way to the discovery of new principles of cell biology that are common to all organisms.

However, bacteria are not just important as laboratory tools to understand higher orgamisms; they are important and interesting in their own right. For instance, they play an essential role in the ecology of the Earth. They are the only organisms that can "fix" atmospheric nitrogen, that is, convert N2 to ammonia, which can be used to make nitrogen-containing cellular constituents such as proteins and nucleic acids. Without bacteria, the natural nitrogen cycle would be broken. Bacteria are also central to the carbon cycle of the Earth because of their ability to degrade recalcitrant natural polymers such as cellulose and lignin. Bacteria and some types of fungi thus prevent the Earth from being buried in plant debris and other carbon-containing material. Toxic compounds including petroleum, many of the chlorinated hydrocarbons, and other products of the chemical industry can also be degraded by bacteria. For this reason, these organisms are essential in water purification and toxic waste cleanup. Moreover, bacteria produce most of the naturally occurring so-called greenhouse gases, such as methane and carbon dioxide, which are in turn degraded by other types of bacteria. This cycle helps maintain climate equilibrium. Bacteria have even had a profound effect on the geology of the Earth, being responsible for some of the major iron ore and other types of deposits in the Earth's crust.

Another unusual feature of bacteria is their ability to live in extremely inhospitable environments, many of which are devoid of life except for bacteria. These organisms are the only ones living in the Dead Sea, where the water's salt concentration is very high. Some types of bacteria live in hot springs at temperatures close to the boiling point of water, and others survive in atmospheres devoid of oxygen, such as eutrophic lakes and swamps.

Bacteria that live in inhospitable environments sometimes enable other organisms to survive in those environments through symbiotic relationships. For example, symbiotic bacteria make life possible for tubular worms next to hydrothermal vents on the ocean floor, where the atmosphere is hydrogen sulfide rather than oxygen. In this symbiosis, the bacteria fix carbon dioxide by using the reducing power of the hydrogen sulfide given off by the hydrothermal vents, thereby furnishing food in the

form of high-energy carbon compounds for the worms. Symbiotic cyanobacteria allow fungi to live in the Arctic tundra in the form of lichens. The bacterial partners in the lichens fix atmospheric nitrogen and make carbon-containing molecules through photosynthesis to allow their fungal partners to grow on the tundra in the absence of nutrient-containing soil. Symbiotic nitrogen-fixing *Rhizobium* and *Azorhizobium* spp. in the nodules on the roots of legumes and some other types of higher plants allow plants to grow in nitrogen-deficient soils. Other types of symbiotic bacteria digest cellulose to allow cows and other ruminant animals to live on a diet of grass. Chemiluminescent bacteria even generate light for squid and other marine animals, allowing individuals to find each other in the darkness of the deep ocean.

Bacteria are also worth studying because of their role in disease. They cause many human, plant, and animal diseases, and new ones are continuously appearing. Knowledge gained from the molecular genetics of bacteria will help in the development of new ways to treat or otherwise control these diseases.

Bacteria and their phages (i.e., viruses that infect bacteria) are also the source of many useful substances such as many of the enzymes used in biotechnology and other industries. Moreover, bacteria make antibiotics and chemicals such as benzene and citric acid.

In spite of substantial progress, we have only begun to understand the bacterial world around us. Bacteria are the most physiologically diverse organisms on Earth, and the importance of bacteria to life on Earth and the potential uses to which bacteria can be put can only be guessed at. Thousands of different types of bacteria are known, and new insights into their cellular mechanisms and their applications constantly emerge from research with bacteria. Moreover, it is estimated that less than 1% of the types of bacteria living in the soil and other environments have ever been isolated. Who knows what interesting and useful functions the undiscovered bacteria might have. Clearly, studies with bacteria will continue to be essential to our future efforts to understand, control, and benefit from the biological world around us, and bacterial molecular genetics will be an essential tool in these efforts. But before discussing this field, we must first briefly discuss the evolutionary relationship of the bacteria to other organisms.

The Biological Universe

The Eubacteria

According to a present view, all organisms on Earth belong to three major divisions: the eubacteria, the archaea (formerly archaebacteria), and the eukaryotes (Figure 1). Most of the familiar bacteria such as *Escherichia coli*, *Streptococcus pneumoniae*, and *Staphylococcus aureus* are eubacteria. These organisms can differ greatly in