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Preface

The various challenges that we are confronted with today require novel solutions
that will influence future developments in the field of materials science worldwide.
This concerns the necessity to master the transition to regenerative energies. Also,
the foreseeable exhaustion of essential resources necessitates developing new
materials strategies, such as to use renewable raw materials, to exploit low-grade
ores, or to establish widespread materials recycling. In view of this situation, the
attitude toward nature has changed: in the past, the progress of mankind was based
on extending its domination over nature. Now consensus is growing that future
progress has to be achieved in close accordance with nature. Such attitude gave rise
to the concept of biologically inspired materials engineering. It includes the
development and production of novel materials, such as living tissue for regenera-
tive bone therapy, and novel materials processing techniques, such as biologically
controlled mineralization via microorganism-silica hybrid composites. “Bio-
inspired” relates to inspiration by some mechanisms or processes present in the
organic world, and the attempt to adapt them to technology. According to this
nomenclature, “bio-inspired approach” denotes the following: The richness of
biomolecular structures and processes serves as basis for the creation of nano-
structured materials with novel functionalities, commonly summarized under the
term “bionanotechnology.” Here we follow the definition of bionanotechnology as
proposed by Ehud Gazit in his book “Plenty of Room for Biology at the Bottom: An
Introduction to Bionanotechnology” (Gazit, 2007). In the following, we will focus on
materials or processes where adaptation includes the use of biomolecules or living
cells, and hence on biologically inspired materials development in a narrower sense.
The enormous progress in molecular biology and microbiology over the past 50
years has generated a huge knowledge as the basis to tackle such tasks. Genetic
engineering allows the generation of tailored recombinant proteins or microorgan-
isms and thus provides a large “toolbox” for the implementation of biological
structures in a technical environment.

Progress of synthetic biology will probably provide a further qualitative leap. In the
paper entitled “Creation of a bacterial cell controlled by a chemically synthesized
genome,” J. Craig Venter and coworkers reported the creation of an artificial
bacterial chromosome and its successful transfer into a bacterium, where it replaced
the native DNA (Gibson et al., 2010). Under the control of the synthetic genome, the
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cell started to produce proteins, eventually leading to DNA replication and cell
division. The creation of this self-replicating synthetic bacterial cell called Myco-
plasma mycoides JCVI-syn1.0 can be regarded as a milestone on the way from
molecular genetics to synthetic biology. An old dream of biologists may become
reality soon: engineering organisms designed for specific technological use, such as
the efficient production of particular medical drugs or of biofuels via photosynthesis.
Close interdisciplinary cooperation of biologists, materials scientists, chemists,
physicists, and computer scientists is required to develop this research area
successfully and to further public acceptance of the novel products, possibly
including even artificial organisms in the future. Interdisciplinary approaches
are also necessary regarding ethics and biosafety problems that require thorough
assessments of the risk potential on the basis of profound and broadly oriented
scientific work.

Based on our experience to teach biologically inspired materials science in various
courses at the Technische Universitit Dresden, our book aims at providing the
basics of this scientific field for students of biology, biotechnology, bicengineering,
materials science, chemistry, and physics and thus to lay the ground for inter-
disciplinary research. The already existing knowledge basis in bio-inspired materials
science allows us to arrange practical results around a few general principles
identified in the living world. Thus, we have organized the book in seven main
chapters coauthored by two or three colleagues: Chapter 1 “Molecular units” by M.
Mertig, W. Pompe, and G. Rédel; Chapter 2 “Molecular recognition” by W. Pompe
and G. Rodel; Chapter 3 “Cell adhesion” by T. Pompe and W. Pompe; Chapter 4
“Whole-cell sensors” by W. Pompe and G. Rodel; Chapter 5 “Biohybrid silica-based
materials” by W. Pompe, H.-]. Weiss, and H. Worch; Chapter 6 “Biomineralization”
by M. Gelinsky, W. Pompe, and H.-]. Weiss; and Chapter 7 “Self-assembly” by M.
Mertig and W. Pompe. It is recommended that one should begin with more
biologically oriented subjects and later turn to those with a stronger materials
science focus. The selection and the explanation of general principles have been
motivated by particular biological case studies. Every chapter devoted to one such
principle is introduced by a few subjectively selected biological case studies. These
examples provide the background for elucidating the particular principle in the
second section. In the third part of every chapter, examples for materials processing
in engineering, medicine, and environmental technologies are given. We are aware
that the subject of every chapter could be extended into a whole monograph.
However, we see that students of materials science as well as of biology prefer
to get an introduction to the whole field allowing them to initiate deeper studies of
special topics. Therefore, we try to develop the basic principles as a kind of focusing
and connecting part. In addition to biological principles, basic physical and chemical
laws have been included since they are likewise essential for successful bio-inspired
materials processing. Preferably, we chose a heuristic approach to the various topics.
Occasionally, small tasks for quantitative estimates or simple modeling are formu-
lated, including hints for the solutions. We hope that it will motivate the reader to
address more complex calculations in the related original literature.
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1
Molecular Units

1.1
Case Studies

Living beings are “open” systems whose sustained existence requires fluxes. Since
even very simple open systems such as a candle flame or a water jet form their own
shape and restore it after a disturbance, one may readily accept the idea that more
complex open systems are able to form and sustain more complex structures in
space and time. Apparently, there are open systems involving chemical reactions
with a tendency toward the formation of substances and reaction cycles with
increasing complexity, ending up in the formation of life. The molecular processes
of life are usually confined to enclosed (but not closed) spaces, the cells and their
internal compartments. Eukaryotic cells, which are discriminated from prokaryotic
cells by the presence of a nucleus harboring the vast majority of genetic information,
are equipped with a variety of such functionally defined compartments, collectively
summarized as organelles (Figure 1.1). This type of confinement is realized by
membranes shielding the interior and controlling the flow of substances, energy,
and information in and out. The information flow is facilitated by the membranes’
capability of signal detection and transduction. Structural flexibility of the plasma
membrane is a necessary precondition for cell motility and division. The cell is filled
with cytoplasm, an assembly of functional entities and filamentous networks
immersed in an aqueous solution, the cytosol.

Since there are good reasons for the assumption that all organisms have des-
cended from a hypothetical common progenitor, their relationship has the topology
of a tree and hence is usually visualized as a graph known as the phylogenetic tree of
life (Figure 1.2). One can be sure that the tree of life obtained with a particular
advanced technique, as the one in Figure 1.2, does not much differ from the real one
and thus can serve as a basis for considerations as if it were the real one. As seen in
the figure, the tree of life consists of three major domains. The vast majority of
organisms are unicellular. Multicellular species are only found in a few branches
of the Eukaryota, which are distinguished by the presence of a nucleus contain-
ing most of the genetic information. Autotrophic and heterotrophic organisms
are present in every major domain. These terms refer to the source of the
energy-rich organic substances (nutrients) required to drive the metabolism.

Bio-Nanomaterials: Designing Materials Inspired by Nature, First Edition. Wolfgang Pompe, Gerhard Radel,
Hans-Jiirgen Weiss, and Michael Mertig.
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.
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1 Molecular Units

Rough endoplasmic reticulum Nucleus
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\ Nuclear envelope
Nuclear pore

Ribosomes
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Secretory vesicle

Golgi apparatus Lysosome

—— Plasma membrane

Figure 1.1 Eukaryotic cell structure with the endomembrane system. (Source: Wikimedia
Commons; author Mariana Ruiz.)

Autotrophic organisms are able to produce the nutrients by themselves, starting
from inorganic substances. In contrast, heterotrophic organisms are unable to
synthesize their nutrients and hence have to acquire them by consuming organic
substances. Besides the well-known photoautotrophy of plants, an alternative form
of autotrophy, the so-called chemoautotrophy, is widespread among the Prokaryota.
In the presence of oxygen, chemoautotrophic organisms make use of the energy
released by oxidation, notably of inorganic substances, enabling them to live in
extreme habitats such as salt lakes, hot springs, deep sea floors, and so on. This
property makes chemoautotrophs interesting for bioengineering. Photoautotrophic
cyanobacteria have recently been considered with respect to their suitability for
biofuel production. Eukaryotes are especially valuable for biotechnology, bio-
inspired materials development, and medical engineering. Fermentation by means
of yeast, for example, has been applied for millennia. Recently, animal stem cells
have been widely used in tissue engineering developments. The huge variety of
organisms offers a wealth of objects with structures differing on the molecular
level that may be suitable as building blocks in biotechnology and biologically
inspired materials science. Today, we are still in a very early stage of exploring
their potential. Our responsibility for the protection of life on Earth implies that
progress in this field of research should always be complemented with adequate
risk assessment.
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Figure 1.2 The phylogenetic tree of life based on the comparison of ribosomal RNA. (Bacteria
and Archaea are also called Prokaryota. The names of most taxa are omitted here for simplicity.)

The sizes of the bimolecular structures investigated as potential building blocks
range from molecular (0.2nm) to cell size (0.1 mm) (Figure 1.3). Remarkably,
organisms utilize only a small fraction of the chemical elements. Obviously, they
are sufficient to form the large variety of organic compounds required for
sustaining the processes of life. Let us consider the composition of the bacterium

Fibroblast Diatom Bacillus sphaericus
70 pum 30 pm 8 um

Collagen I fibril Glucose l:"it cell DNA
diameter oxidase of protein diameter
200 nm 100 nm me;'?)br::qne 2 firi

Figure 1.3 Size variation of biological components.
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Table 1.1 Molecular composition of E. coli according to Nelson and Cox (2008).

Percentage of total Approximate number of
cellular weight different molecular species
Water 70 1
Proteins 15 3000
Nucleic acids
DNA 1 14
RNA 6 >3000
Polysaccharides 3 10
Lipids 2 20
Monomeric subunits and intermediates 2 500
Inorganic ions 1 20

Escherichia coli, with size is about 2 pum x 1 um (Table 1.1). Its cytoplasm contains
the nucleoid usually with one DNA chain, eventually a few small circular DNA
molecules called plasmids, about 15 000 ribosomes (the sites of protein synthesis),
10 to several hundred copies of about 1000 different enzymes, about 1000 smaller
organic compounds with a molecular weight less than 1000 (metabolites or
coenzymes), and various inorganic ions. The cytoplasm is surrounded by the
cell envelope, which consists of an outer and an inner membrane composed of
lipid bilayers and peptidoglycans. Connected to the envelope are specific protein
structures such as flagellae for cell propelling, pili providing adhesion sites, and
surface layer proteins for mechanical stabilization and acting as filter and ion
transport structures.

Eukaryotic cells with a size of about 5-100um show a higher structural
complexity. The essential differences to bacteria are the presence of a nucleus,
a number of membrane-enclosed organelles (e.g., mitochondria, endoplasmic
reticulum, Golgi complexes, peroxisomes, and lysosomes), and the cytoskeleton, a
highly structured network of protein filaments (microtubules, actin filaments, and
intermediate filaments) organized by numerous proteins that regulate the assem-
bling and disassembling of the various filaments. Characteristic components of
plant cells are chloroplasts and vacuoles. A concise overview of the structure and
properties of the main groups of biomolecules available for a bottom-up design of
nanostructured materials — nucleic acids, proteins, carbohydrates, and lipids — is
provided below.

1.1.1
Nucleic Acids

The storage, replication, and transfer of genetic information in living organisms is
mediated by chain-like macromolecules called nucleic acids, the deoxyribonucleic
acid (DNA) and several types of ribonucleic acid (RNA) (Figure 1.4).



