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Preface

This book is intended for readers who have had a course in iso-differential calculus and
theory of probability. It can be used for a senior undergraduate course.

Chapter 1 represents a short introduction to the theory of iso-probability theory. They
are defined iso-probability measure, iso-probability space, random iso-variable of the first,
second, third, fourth and fifth kind, iso-expected values, iso-martingales, iso-Brownian mo-
tion, iso-Wiener processes, Paley-Wiener-Zygmund integral, Itd’s iso-integral, and they are
deducted some of their properties.

Chapter 2 is devoted on the iso-stochastic differential equations of the first, second and
third kind, and for them they are proved the general existence and uniqueness theorems.
They are given some methods for solving of some classes iso-stochastic differential equa-
tions.

Chapter 3 deals with the linear iso-stochastic differential equations.

The dependence on parameters and initial data is considered in Chapter 4.

In Chapter 5 is investigated the stability of the main classes iso-stochastic differential
equations.

Iso-Stratonovich iso-integral and its properties are considered in Chapter 6.

I will be very grateful to anybody who wants to inform me about errors or just
misprints, or wants to express criticism or other comments, to my e-mails svetlinge-
orgiev] @gmail.com, sgg2000bg @yahoo.com.

Svetlin Georgiev
Paris, France
August 15,2014
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Chapter 1

A Crash Course in Basic
Iso-Probability Theory

1.1 Basic Definitions

Let Q be a nonempty set.
Definition 1.1.1. A collection U of subsets of Q with the properties
(i) 9. QeUl,
(ii) ifA1,A»,... €U, then _ .
A (NAkeU,
k=1 k=1
(iii) ifA€ U, then A :=Q\A € U,
will be called G-algebra.

Below we will suppose that U is an ¢-algebra of subsets of €.
Let T :U — (0,00), P: U — [0,00) be given. We note

R P(A

P(A) = # for VA eU.

T(A)
Definition 1.1.2. We call P an iso-probability measure provided
S B —0 PO — F(O) — 1
(ii) ifAj,A,,... €U, then
P([JAo < Y P(AY),
k=1 k=1

(iii) ifA|,A,,... € U are disjoint sets, then

p(OAk) = iﬁ(Ak)-
k=1 k=1
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Below we will suppose that P is an iso-probability measure on U.

Proposition 1.1.3. For every A € U we have

. 1
(4) < Q)

U

Proof. Since

AlJAa =U, A[A°=0,

we have

e = P(Q) = P(AUA) = P(4) + P(A°),

S,

whereupon, because P(A) > 0, P(A¢) > 0, we conclude that

I
(Q)

PA) <

~»

Definition 1.1.4. The triple (Q,U, P) will be called an iso-probability space.
Definition 1.1.5. (i) A set A € U is called an event, points ® € Q are sample paths.
(ii) P(A) is the iso-probability of the event A.

(iii) A property which is true except for an event of iso-probability zero is said to hold
iso-almost surely(usually abbreviated "i-a.s.”).

Proposition 1.1.6. Ler A, B U, A C B,

P(A)<P(B), T(A)>T(B).

Then

Proof. Since T(A) > T(B), we have

= L
T(A) ~ 7(B)
from here and from P(A) < P(B), we obtain
pay= P& PB)_

~ T(A) ~ 1(B)
O

Corollary 1.1.7. If P is a probability measure on U and T(A) > T(B), ACB, A, Be U,
then P(A) < P(B).
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Proposition 1.1.8. Let A, Be U, A C B, and
P(A)>P(B), T(A)<T(B).

Then

Proof. Since 7(A) < T(B), then

Proposition 1.1.9. Let A C Q. Then

1

P(A)+P(A°) = Q)
Proof. We note that
Al A =q.
Then ]
PAl A =P(Q) = Q)

From here, since A(A“ = @, we get
P(A{JA) = P(A) + P(A°)

and

P(A) + P(A) = T(IQ).

Definition 1.1.10. Let A, B C Q. If P(A) > 0, then the quotient

Ps(B) = —P(;;(Q)B)

is defined to be conditional iso-probability of the event B under the condition A.
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We can rewrite the conditional iso-probability as follows

Py (B) = P(}?(Q)B)

From the definition for conditional iso-probability, it follows

P(A("\B) = P(A)PA(B).

Theorem 1.1.11. (multiplicative theorem) For everyn € N, n > 2, if A}, Ay, ..., A, € Q,
we have

’S(AlmAZH---mAn) :P(Al)pAl(AZ)Pﬁlﬂﬂz(A3)m'"nﬁ/‘lﬂ/‘zﬂmﬂ/‘n-l(An)'

P(A1NA2NA3) = P(A1N(A2NA3))
= P(A1)P4, (A2NA43)
now we apply the case

= P(AI)ISAI (AZ)PAlﬂAz(A.?)-

Proof. The case n = 2 follows from the definition for conditional iso-probability. Now we
consider the case n = 3. We have

n=2

We suppose that the assertion is valid for some n € N, n > 2. We will prove the assertion

in the case n+ 1.

Indeed,

P(AINAN...NANAw) = P(ATN(A2NA3N-. . NAn+1))

= P(A1) Py, (A2NA3N...NANAR+1)

P(A)) By, (A2) By, 4y (A3 -NANAL)

Proposition 1.1.12. Let A C Q. Then

Py(Q) = 1.

P(A1) Py, (A2)Pa, 14y (A3) ... Bay sy (Ans).
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Proof. From the definition for conditional iso-probability, we have

A

by PAND) _P)

P(A) — P(A)

Proposition 1.1.13. Let A, B C Q. Then

Py(B)>0
Proof. We have that 13( gl
R ANB
Py(B) = ————,

from here, since P(A) > 0 and P(ANB) > 0, we conclude that P4(B) > 0.
Proposition 1.1.14. Let A, B, C C Q, B(\C = @. Then
PA(B| JC) = Po(B) + B4(C).

Proof. We have

AA(BUC) = Paneue)

_ Pans)uunc)
P(A)

_ P(ANB)+P(ANC)
- P(A)

= By (B)+ P4 (C).

Theorem 1.1.15. Let A\, Ay, ..., A, are disjoint sets in Q and
Q=A,JA{..-UAn
Let also, X C Q be arbitrarily chosen. Then
P(X) = P(A)Pa, (X) +---+ P(An) By, (X).
Proof. We have that

Q=AJA:lJ...JAn

x=xMe,

Since

we get

X =XNQ=XN(AUA:U...UA,)
= (XNADUX NA2)U...UX NA,).
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Then . .
P(X)=P((XNANUXNA)U...UXNA))

=P(XNAI)+P(XNA2) +-+-+P(XNA)

= P(A)) Py, (X)+P(A2) Py, (X) +---+ P(A,) Py, (X).

“U)

Proposition 1.1.16. Let A, BC Q, P(A) >0, P(B) > 0. Then

P(B)

Proof. We have

. P(ANB)

Pi(B) = — !

8= ")
whereupon

P(A(\B) = £4(B)P(A).

From here,

3 _ PANB) _ P(A)PA(B)
Po(A)="5a = "pw) -

Definition 1.1.17. The events Ay, A,, ..., A, will be called mutually independent if

A2 An) = T(Q)PANP(AL) ... P(Ay).

Proposition 1.1.18. Let A|, Ay C Q be mutually independent. Then
P(Ai[AS) = T(Q)P(A)P(AS).
Proof. Firstly, we will note
P(ar) =P(AINQ)
= P(A1N(A2UAS))
= P((A1NA2) U(A1 NAS))
= P(A1NA2) + P(A1 NAS),

1.e.,

P(A()AS) = P(A)) —P(A|[A2),
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whereupon
P(AINAS) = P(A) —T(Q)P(A1)P(A2)

=T(Q)P(A,)

/\

‘*——P(Az )

T(Q)P(A))P(Q\A2)

= P(Q)P(4))P(45).

As in above, one can prove the following assertion.

Proposition 1.1.19. Let A, A> C Q be mutually independent. Then
P(AT[A2) = T(Q)P(AT)P(A,).

Proposition 1.1.20. Let Ay, A, C Q be mutually independent. Then
P(AS(NAS) = T(Q)P(AS) P(AS).

Proof. We have
P(A§) = P(ASNQ)

= P(ATN(A5UA2))

= P((ATNA5)U(ATNA2))

= P(ASNAS) + P(ASNA2)

= P(ASNA2) + T (Q)P(AS) P(A,),
whereupon

() B(AS) (ﬁ —P(Az)) — P(AS )49,

or
P(AS[AS) = T(Q)P(A])P(AS).
Definition 1.1.21. Let Ay, Ay, ..., A,, ... be events. Then the event
Miei U Am = {me Q:® belongs to infinitely many of the A,

is called A, infinitely often, abbreviated A,i.o., i.e.,

Anico.= ) | An-

n=|m=n
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Lemma 1.1.22. (iso-Borel-Cantelli lemma) Let Ay, Ay, ..., Ay, ... be events such that
T(A,) > Q for every n € N, where Q is a positive constant. Let also, P(A) < P(B) and
T(A) > T(B) forevery A, BEU, ACB. IfY_, P(A,) < o, then

P(A,i.0.)=0.

Proof. By definition we have
Agio.= () | Am-
n=|1m=n
Therefore

Ajo.C [JAn for  VneN.

m=n

Hence,
P(Ayi.0.) < P(UnnAm),

T(Ani.0.) > T (UpepAnm),

| < 1
T(Apio.) — T(UnmznAm)’

and

504 P(Ayi.0.
P(Aji.0.) = T—T((A,,;.(c)).))

P(Up=nAm)
< 1:’_11 n
- T(Um:" Am)

- ﬁ(U::n Am)

S Z:;;:n ﬁ(Am)

= §roe P(Am)
=T T(Am)

S éZ::nP(Am)

—_

n—-ooy

because Y 7| P(A,) < ee. O

Definition 1.1.23. A sequence {X;}7_, of random iso-variables converges in iso-
probability to an iso-random variable X, provided

klim ﬁ(l)?k_xl) > €

for every g > 0.



