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Preface :

This book is a direct outgrowth of a course called “Introduction to Combinator-
ics” that I have taught at the University of Wisconsin—Madison once a year for
the past several years. With the growing importance of combinatorial methods in
mathematics and in applications and its recognition as a legitimate mathematical
discipline, I had felt that an introductory course in combinatorics was needed. The
course was initiated with the Department of Mathematics but was later cross-listed
by the Computer Sciences Department and the Statistics Department. Thus stu-
dents at the University of Wisconsin—Madison have obtained university credit for
it as either a mathematics, a computer sciences, or a statistics course. The
prerequisite for the course is two semesters of calculus, although not much use is
made of calculus (the notable exceptions occur in Chapter 7 on generating
functions, where use is made of power series, and in Chapter 4 on binomial
coefficients, where in a couple( of. instances some use of differentiation and
integration is made in order to derive identities). The reason for the prerequisite
was mainly to ensure that students had a moderate amount of mathematical
sophistication; the reason it was no more than two semesters was that I hoped to
attract some students in other disciplines in which the ideas and methods of
combinatorics are becoming increasingly useful. Thus I have had students in the
course who were studying subjects such as linguistics, biology, and electrical
engineering. A number of students have been secondary education majors empha-
sizing mathematics. It seems to me that a course in combinatorics is excellent for
prospective high-school mathematics teachers, because many combinatorial ideas
are accessible early in one’s mathematical development. A course in combinatorics
is also, I believe, an ideal vehicle with which to show in a non-technical way the
excitement, charm, and liveliness of mathematics as well as its usefulness in the
outside world. Although the course I have taught at Wisconsin is intended as an
undergraduate course, I have had some graduate students in computer sciences and
statistics in my classes.

There is more material in the book than can be covered in a one-semester
undergraduate course. The last time I taught the course at Madison, I covered
Chapters 1 through 10 and part of 11 (up to the proof of the 5-color theorem for
planar graphs), but in retrospect this was too much material for such a short time.
A more reasonable one-semester course would be Chapters 1 through 7 (possibly
omitting Chapter 7 if time is short) and then two of Chapters 8, 9, and 10. If there
is additional time, then some topics can be selected from Chapters 11 and 12. For a
more leisurely two-semester course, Chapters 1 through 8 can be covered in the
first semester and Chapters 9 through 12 in the second semester. The interrelation
of the chapters is as follows. Chapters 1 through 7 form a sequence and should be
covered in order. Chapter 8 is a unit in itself, although the general problem treated
in this chapter is introduced in Section 1.1. Likewise, Chapter 9 is a separate unit

ix
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apart fromits introduction in Section 1.5 and the use of Theorem 8.1.1 (from
Chapter 8) in the proof of Theorem 9.3.3. Section 9.1 also contains a discussion of
finite fields, including the construction of finite fields using polynomial rings. It is
possible to limit one’s discussion of finite fields to the field of integers modulo a
prime p and to limit the application of finite fields in subsequent sections of
Chapter 9 in the same way. Chapters 10 and 11 also form a separate unit and
should be covered in order—again, there is discussion in Section 1.4 of one of the
problems treated in Chapter 11 (the 4-color problem), and in Section 1.6 of one of
the problems treated in Chapter 10 (the shortest-route problem). Chapter 12 is a
little more difficult to classify. Sections 12.1 and 12.2 do not depend substantially
on any of the previous material. Sections 12.3 and 12.4 form a unit and contain the
marriage problem treated in Chapter 8 as a special case. Section 12.5 is also a
separate unit and contains a gemneraiization of the marriage problem.

The exercises—there are nearly 500 of them—should form an important part of a
course given from this book. In order to obtain a thorough understanding of the
material, the serious student should attempt a large number of problems. If one
cannot apply the ideas and methods, then one has not progressed very far. A few of
the exercises are starred; these seemed to the author to be at a much higher level
than the others. Many of the exercises are routine; many are challenging but not
overwhelming,.

I wish to express my appreciation to my students who have tolerated an earlier
version of this book and have kindly pointed out numerous errors. I am very
grateful to Margaret Higbie for the encouragement she has given me during the
preparation and production of this book. Also I would like to thank the staff of
Elsevier North-Holland for the efficient and professional manner in which the book
has been expedited. I am grateful to Herbert J. Ryser who first introduced me to the
study of combinatorics.

RICHARD A. BRUALDI
February 1977 Paris, France
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Chapter 1
What is Combinatorics?

It would be surprising indeed if a reader of this book had never solved a
combinatorial problem. Have you ever counted the number of games n
teams would play if each team played every other team exactly once? Have
you ever constructed magic squares? Have you ever attempted to trace
through a network without removing your pencil from the paper and
without tracing any part of the network more than once? Have you ever
counted the number of poker hands which are full houses in order to
determine what the odds against a full house are? These are all combina-
torial problems. As they might suggest, combinatorics has its historical
- roots in mathematical recreations and games. Many problems that were
studied in the past either for amusement or for their aesthetic appeal are
today of great importance in pure and applied science. Today combinator-
ics is an important branch of mathematics, and its influence is expanding
rapidly. Part of the reason for the tremendous growth of combinatorics in
the past decade has been the phenomenal impact that computers have had-
and continue to have in our society. Because of their lightning speed,
computers have been able to solve large-scale problems that previously had
been unthinkable. But computers do not function alone. They need to be
programmed to perform. The basis for these programs often consists of
combinatorial algorithms for the solutions of problems. Another reason for
- the growth of combinatorics is its applicability to disciplines that had
previously had little serious contact with mathematics. Thus we find that
the ideas and techniques of combinatorics are being used not only in the
traditional area of mathematical application, namely the physical sciences,
but also in the social and biological sciences.

Combinatorics is concerned with arrangements of the objects of a set
into patterns. Two general types of problems occur repeatedly.

(1) Existence of the arrangement. If one wants to arrange the objects of
a set so that certain conditions are fulfilled, it may be far from
clear whether or not such an arrangement is possible. This needs to
be determined. If the arrangement is not always possible, it is then



2 What is Combinatorics?

appropriate to ask under what conditions, necessary and sufficient,
the desired arrangement can be achieved.

(i) Enumeration or classification of the arrangements. If a specified
arrangement is possible, there may be several ways of achieving it.
If so, one may want to count their number or to classify them into

types.

Although both existence and enumeration can be considered for any
combinatorial problem, it usually happens in practice that if the existence
question requires extensive study, the enumeration problem is unmanage-
able. However, if the existence of a specified arrangement causes no
difficulty, it may be possible to count the number of ways of achieving the
" arrangement. In exceptional cases (when their number is small), the
arrangements can be listed. Thus many combinatorial problems are of the
form “Is it possible to arrange...?” or “Does there exist a...7” or “In how
many ways can...?” or “Count the number of...".

A third combinatorial problem that occurs in conjunction with (i) is

(iii) Study of a known arrangement. After one has done the (possibly
- difficult) work of constructing an arrangement satisfying certain
specified conditions, its properties and structure can then be in-
vestigated. Such structure may have implications for the classifica-
tion problem (ii) and also for potential applications.

More generally, combinatorics is concerned with the analysis of discrete
Structures and relations.

One of the principal tools of combinatorics for verifying discoveries is
mathematical induction. Induction is often a powerful procedure, and it is
especially so in combinatorics. It is often easier to prove a stronger result
than a weaker result with mathematical induction. Although it is necessary
to verify more in the inductive step, the inductive hypothesis is stronger.

But it is generally true- that the solutions of combinatorial problems
require ad hoc methods. One cannot in general fall back onto known
results or axioms. One must study the situation, develop some insight, and
use one’s own ingenuity for the solution of the problem. I do not mean to
imply that there are no general principles or methods that can be applied.
The inclusion-exclusion principle, the so-called pigeonhole principle, and
the methods of recurrence relations and generating functions are all
- examples of general principles and methods which we will take up in later
chapters. But often to see that they can be applied and to apply them
requires cleverness. Thus experience in solving combinatorial problems is
very important.



Example. Perfect Covers of Chessboards v 3

. In order to make the preceding discussion more meaningful, let us now
turn to a few examples of combinatorial problems. They vary from
relatively simple problems (but requiring ingenuity for solution) to prob-
lems whose solution was a major achievement in combinatorics. -

1.1 EXAMPLE. PERFECT COVERS OF CHESSBOARDS

Consider an ordinary chessboard which is divided into 64 squares in 8
rows and 8 columns. Suppose there is available a supply of identical-
shaped dominoes, pieces which cover exactly two adjacent squares of the
chessboard. Is it possible to arrange 32 dominoes on the chessboard so that
no 2 dominoes overlap, every domino covers 2 squares, and all the squares
of the chessboard are covered? We call such an arrangement a perfect cover
of the chessboard by dominoes. This is an easy arrangement problem, and
one quickly can construct many different perfect covers. It is difficult but
nonetheless possible to enumerate the number of different perfect covers.
This was found by M. E. Fischer! in 1961 to be 12,988,816 =2%x(901)>.
The ordinary chessboard can be replaced by a more general chessboard
divided into mn squares lying in m rows and n columns. A perfect cover
need not exist now. Indeed, there is no perfect cover for the 3-by-3 board.
For which values of m and n does the m-by-n chessboard haye a perfect
cover? It is not difficult to see that an m-by-n chessboaré will have a
perfect cover if and only if at least one of m and n is even, or equivalently,
if and only if the number of squares of the chessboard is even. Fischer has
derived general formulae involving trigonometric functions for the number
of different perfect covers for the m-by-n chessboard. This problem is
equivalent to a famous problem in molecular physics known as the dimer
problem. 1t originated in the investigation of the absorption of diatomic
molecules (dimers) on surfaces. The squares of the chessboard correspond
to molecules, while the dominoes correspond to the dimers.

Consider once again the 8-by-8 chessboard, and,with a pair of scissors
cut out two diagonally opposite corner squares. Is it possible to arrange 31
dominoes to obtain a perfect cover of this “pruned” board? Although the
pruned board is very close to being the 8-by-8 chessboard, which has over
twelve million perfect covers, it has no perfect cover. The proof of this is
an example of simple but clever combinatorial reasoning. In an ordinary
8-by-8 chessboard the squares are alternately colored black and white,
there being 32 black and 32 white squares. If we cut out 2 diagonally .
opposite corner squares, we have removed 2 squares of the same color, say
white. This leaves 32 black and 30 white squares. But each domino covers

IStatistical Mechanics of Dimers on a Plane LattiCc, Physical Review 124 (1961), 1664-1672.
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1 black and 1 white square, so that 31 dominoes on the board must cover
31 black and 31 white squares. Therefore the pruned board can have no
perfect cover.

More generally, one can take an m-by-n chessboard whose squares are
alternately black and white and arbitrarily cut out some squares, leaving a
pruned board. When does a pruned board have a perfect cover? Using the
reasoning above, we conclude that the pruned board must have an equal
number of black and white squares for a perfect cover to exist. But this is
not suffici’e'pt, as the example in Figure 1.1 indicates.

B W

; ot &

K- 7t
w

B W B w

B W B w B

Figure 1.1

Thus we ask: What are necessary and sufficient conditions for a pruned
board to have a perfect cover? We will return to this problem in Chapter 8
and obtain a complete solution using the theory of systems of distinct
representatives. There a practical formulation of this problem in terms of
assigning qualified applicants to jobs will be given.

1.2 EXAMPLE. CUTTING A CUBE

j Consider a block of wood in the shape of a cube, 3 feet on an edge. It is

desired to cut the cube into 27 smaller cubes, 1 foot on an edge. What is
the smallest number of cuts’in which this can be accomplished? One way
of cutting the cube is to make a series of 6 cuts, 2 in each direction, while
keeping the cube in one block as shown in Figure 1.2. But is it possible to
use fewer cuts if the pieces can be rearranged between cuts? An example is
given in Figure 1.3 where the second cut now cuts through more wood
than it would have if we had not rearranged the pieces after the first cut.
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Since the number of pieces and thus the number of rearrangements
increases with each cut, this might appear to be a difficult problem to
analyze.

But let us look at it another way. Every one of the 27 small cubes except
the one in the middle has at least one face which was originally part of one
- of the face= of the large cube. The cube in the middle has every one of its .
faces formed by cuts. Since it has 6 faces, 6 cuts are necessary to form it.
Thus at least 6 cuts are always necessary, and rearranging between cuts
does not help. An energetic student might wish to investigate the number
of different ways in which the cube can be cut into 27 smaller cubes using
only 6 cuts. ;

1.3 EXAMPLE. MAGIC SQUARES

Among the oldest and most popular forms of mathematical recreations
are magic squares. A magic square of order n is an n-by-n array con-
structed out of the integers 1,2,3,...,n? in such a way that the sum s of the
integers in each row, in each column, and in each of the two diagonals is
the same. The number s is called the magic sum of the magic square.
Examples of magic squares of orders 3 and 4 are

$1 12 1(3) 1? 1;

3 5 174, 91 6\ 7 ‘B (L.1)

4 9 2 :
4 15 14 1

with magic sums- 15 and 34 respectively. In medieval days there was a .
certain mysticism associated with magic squares, and they were worn for
protection against evils. Benjamin Franklin was a magic-square fan, and
his papers contain many interesting examples.
The sum of all the integers in a magic square of order n is 1+2+3
- + n?, which is seen to be n*(n*+1)/2 from the formula for the sum
of numbers in an arithmetic progression. Since a magic square of order n
has n rows each with sum s, we obtain the relation ns=n%*(n*+1)/2. Thus
any two magic squares of order n have the same magic sum, namely
s=n(n>+1)/2. The combinatorial problem is to determine for which
values of n there is a magic square of order » and to find general methods
of construction. It is not difficult to verify that there can be no magic
square of order 2 (the magic sum would have to be 5). But for all other
values of n a magic square of order 7 can be constructed. There are many
special methods of construction. We describe here a method found by de
la Loubére in the seventeenth century for constructing magic squares of
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order n when n is odd. First a 1 is placed in the middle square of the top
row. The successive integers are than placed in their natural order along a
diagonal line which slopes upwards and to the right, with the followmg
modifications.

(i) When the top row is reached, the next integer is put in the bottom
row as if it came immediately above the top row.

(ii) When the right-hand column is reached, the next integer is put in
the left-hand column as if it immediately succeeded the right-hand
column.

(iii) When a square is reached which has already been filled or' when
the top right-hand square is reached, the next integer is placed in
the square immediately below the last square which was filled.

‘The magic square of order 3 in (1.1) was constructed using de la Loubére’s
method, as was this magic square of order 5:

17 24 1 8 15
23 5 7 14 16|
4 6 13 20 22| (1.2)
10 12 19 21 3
11 18 25 2 9

Methods for constructing magic squares of even orders different from 2
and other methods for constructing magic squares of odd order can be
found in the book Mathematical Recreations and Essays by W. W. Rouse

" Ball, revised by H. S. M. Coxeter (New York: Macmillan, 1962, PP
193-221).

1.4 EXAMPLE. THE 4-COLOR PROBLEM

Consider a map on a plane or on the surface of a sphere in which the
countries are connected regions (thus the state of Michigan would not be
allowed as a country of such a map). In order to be able to differentiate
countries quickly, it is required to color them so that two countries which
have a common boundary receive different colors. What is the smallest
number of colors necessary to guarantee that every map can be so colored?
Until recently, this was one of the most famous unsolved problems in
mathematics. Its appeal to the layperson is due to the fact that it can be
simply stated and understood. Except for the well-known angle-trisection
problem, it has probably intrigued more amateur mathematicians than any
other problem. First posed by Francis Guthrie about 1850 when he was a
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graduate student, it has also stimulated a large body of mathematical
research. Indeed, an entire book, The Four-Color Problem by O. Ore (New
York: Academic, 1967) is devoted to this problem and related problems.
Some maps require 4 colors. An example is the map in Figure 1.4. Since
each pair of the 4 countries of this map have a common boundary, it is
clear that 4 colors are necessary to color the map. It was proven by P. J.
Heawood in 1890 (see Chapter 11) that 5 colors are always enough to color
any map. It is not too difficult to show (see Chapter 11) that it is
impossible to have a map in the plane which has 5 countries, every pair of
which have a boundary in common. Such a map, if it had existed, would
have required 5 colors. In 1976 two mathematicians, K. Appel and W.
Haken, astounded the mathematical community by announcing? that they
had proven that any map in the plane could be colored with 4 colors.. Their
proof required about 1200 hours of computer calculations, nearly 10
billion separate, logical decisions!

Figure 1.4

1.5 EXAMPLE. THE PROBLEM OF THE 36 OFFICERS

Given 36 officers of 6 ranks and from 6 regiments, can they be arranged
in a 6-by-6 formation so that in each row and column there is one officer
of each rank and one officer from each regiment? This problem, which was
posed in the eighteenth century by the Swiss mathematician L. Euler (one
of the most prolific mathematicians of all time) as a problem in recrea-
tional mathematics, has important repercussions in statistics, especially in

_the design of experiments (see Section 9.3). An officer can be designated
by an ordered pair (i,j), where i denotes his rank (i=1,2,...,6) and j
denotes his regiment (j=1,2,...,6). Thus the problem asks to arrange the

2Every planar map is four colorable, Bulletin of The American Mathematical Society, 82 (1976),
711-712. ¢
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36 ordered pairs (i,j) (i=1,2,...,6; j=1,2,...,6) into a 6-by-6 array so that
in each row and each column the integers 1,2, ...,6 occur in some order in the
first positions and in some order in the second positions of the ordered pairs.
Such an array can be split into two 6-by-6 arrays, one corresponding to the
first positions of the ordered pairs (the rank array) and the other to the
second positions (the regiment array). Thus the problem can be stated: Do
there exist two 6-by-6 arrays whose entries are taken from the integers
1,2,...,6 such that (i) in each row and in each column of these arrays the
integers 1,2,...,6 occur in some order and (ii) when the two arrays are
juxtaposed all of the 36 ordered pairs (i,j)) (i=1,2,...,6; j=1,2,...,6)
occur? To make this concrete, suppose there are 9 officers of 3 ranks and
from 3 different regiments. Then a solution for the corresponding problem
is ,

[l 2 3] [l 2 3] LYy 22 @G¢3)

3 shkirnd 2:5i3 30l 32 (L3 @1

fle. 5ok Yol 22 @3 @y @) 1)
rank regiment juxtaposed
array array array

The rank and regiment arrays above are examples of what are called Latin
squares of order 3. The following are Latin squares of orders 2 and 4:

; 15in2 53514
1 2 4isloo2a:3

[2 1]’ 34542 "
2503 24..:1

The two Latin squares of order 3 in (1.3) are called orthogonal because
when there are juxtaposed all the 9 possible ordered pairs (i,j) with
i=1,2,3 and j=1,2,3 result. We can thus rephrase Euler’s question: Do
_ there exist two orthogonal Latin squares of order 6? Euler investigated the
more general problem of orthogonal Latin squares of order n. It is easy to
verify that there is no pair of orthogonal Latin squares of order 2, since
besides the Latin square of order 2 given in (1.4) the only other ‘one is

2 L
4 & Y 3
and these are not orthogonal. Euler showed how to construct a pair of
orthogonal Latin squares of order n whenever 2 is odd or has 4 as a factor.

Notice that this does not include n=6. On the basis of many trials he
concluded, but did not prove, that there was no pair of orthogonal Latin



