
WOVOODHEAD PUBLISHING SERIES IN TEXTILES

Woven textile structure Theory and applications

B. K. Behera and P. K. Hari

extiles: Number 115

Woven textile structure

Theory and applications

B. K. Behera and P. K. Hari

The Textile Institute

CRC Press

Boca Raton Boston New York Washington, DC

Published by Woodhead Publishing Limited in association with The Textile Institute Woodhead Publishing Limited, Abington Hall, Granta Park, Great Abington Cambridge CB21 6AH, UK www.woodheadpublishing.com

Woodhead Publishing India Private Limited, G-2, Vardaan House, 7/28 Ansari Road, Daryaganj, New Delhi – 110002, India www.woodheadpublishingindia.com

Published in North America by CRC Press LLC, 6000 Broken Sound Parkway, NW, Suite 300, Boca Raton, FL 33487, USA

First published 2010, Woodhead Publishing Limited and CRC Press LLC © Woodhead Publishing Limited, 2010
The authors have asserted their moral rights.

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the authors and the publishers cannot assume responsibility for the validity of all materials. Neither the authors nor the publishers, nor anyone else associated with this publication, shall be liable for any loss, damage or liability directly or indirectly caused or alleged to be caused by this book.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording, or by any information storage or retrieval system, without permission in writing from Woodhead Publishing Limited.

The consent of Woodhead Publishing Limited does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from Woodhead Publishing Limited for such copying.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data A catalog record for this book is available from the Library of Congress.

Woodhead Publishing ISBN 978-1-84569-514-9 (book) Woodhead Publishing ISBN 978-1-84569-781-5 (e-book) CRC Press ISBN 978-1-4398-3116-8 CRC Press order number N10191

The publishers' policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp which is processed using acid-free and elemental chlorine-free practices. Furthermore, the publishers ensure that the text paper and cover board used have met acceptable environmental accreditation standards.

Typeset by Replika Press Pvt Ltd, India Printed by TJ International Limited, Padstow, Cornwall, UK Dr B. K. Behera is a Professor in the Department of Textile Technology, Indian Institute of Technology Delhi. His research interests include modeling and simulation, mechanics of textile structure, soft computing applications in the structure – property relationship of fabric, 3D weaving for composite applications and fabric handle and comfort. He has supervised more than 60 Masters and PhD students, published 110 research papers and presented more than 40 papers in various international conferences held in about 13 different countries. Professor Behera has completed 16 sponsored research projects and more than 50 industrial consulting projects as principal investigator. He has contributed a monogram on image processing applications in textiles published in Textile Progress. He has four patents to his credit. He has also contributed chapters in three other books being published by Woodhead Publishing Limited. Professor Behera is a regular contributor to the Textile Research Symposium held under the aegis of the Textile Machinery Society of Japan and has also contributed to the AUTEX world conference. Professor Behera has also worked as a specially-appointed Professor in the Global Centre of Excellence Programme at Shinshu University Japan (bijoy.behera@ yahoo.com).

Dr P. K. Hari was Professor and Head of the Textile Department of the Indian Institute of Technology Delhi for over 30 years until his retirement. During his tenure at IIT Delhi, he supervised 10 PhD students in weaving, preparation and structure–property relationships of woven fabrics. Recently he has contributed to fabric structure and textile designing through web-based teaching. He has organised the International Textile Academia, a global forum for Textile Institutes with the sponsorship of Rieter Textile Machinery. He has contributed to Vision 2020 for the Indian Textile Industry sponsored by the Indian Government's Department of Scientific and Industrial Research. He has been a regular contributor to the international conferences, AUTEX and the Institute for Textile Technik. He has published over 60 papers in international textile journals. He is presently Professor Emeritus at TIT&S, Bhiwani and a textile consultant and can be reached at pk_hari@hotmail. com.

Woodhead Publishing Series in Textiles

1 Watson's textile design and colour Seventh edition Edited by Z. Grosicki

2 Watson's advanced textile design

Edited by Z. Grosicki

3 Weaving Second edition

P. R. Lord and M. H. Mohamed

4 Handbook of textile fibres Vol 1: Natural fibres

J. Gordon Cook

5 Handbook of textile fibres Vol 2: Man-made fibres

J. Gordon Cook

6 Recycling textile and plastic waste Edited by A. R. Horrocks

7 New fibers Second edition T. Hongu and G. O. Phillips

8 Atlas of fibre fracture and damage to textiles Second edition J. W. S. Hearle, B. Lomas and W. D. Cooke

9 Ecotextile '98 Edited by A. R. Horrocks

10 Physical testing of textiles B. P. Saville

11 Geometric symmetry in patterns and tilings C. E. Horne

12 Handbook of technical textiles

Edited by A. R. Horrocks and S. C. Anand

13 Textiles in automotive engineering W. Fung and J. M. Hardcastle

14 Handbook of textile design J. Wilson

15 **High-performance fibres** *Edited by J. W. S. Hearle*

16 Knitting technology Third edition D. J. Spencer

17 Medical textiles Edited by S. C. Anand

18 Regenerated cellulose fibres Edited by C. Woodings

19 Silk, mohair, cashmere and other luxury fibres Edited by R. R. Franck

20 Smart fibres, fabrics and clothing Edited by X. M. Tao

21 Yarn texturing technology J. W. S. Hearle, L. Hollick and D. K. Wilson

22 Encyclopedia of textile finishing *H-K. Rouette*

23 Coated and laminated textiles W. Fung

24 Fancy yarns R. H. Gong and R. M. Wright

25 Wool: Science and technology Edited by W. S. Simpson and G. Crawshaw

26 Dictionary of textile finishing *H-K. Rouette*

27 Environmental impact of textiles

K. Slater

28 Handbook of yarn production P. R. Lord

29 **Textile processing with enzymes** *Edited by A. Cavaco-Paulo and G. Gübitz*

30 The China and Hong Kong denim industry Y. Li, L. Yao and K. W. Yeung

31 The World Trade Organization and international denim trading Y. Li, Y. Shen, L. Yao and E. Newton

32 Chemical finishing of textiles W. D. Schindler and P. J. Hauser

33 Clothing appearance and fit J. Fan, W. Yu and L. Hunter

34 Handbook of fibre rope technology H. A. McKenna, J. W. S. Hearle and N. O'Hear

35 Structure and mechanics of woven fabrics J. Hu

36 Synthetic fibres: Nylon, polyester, acrylic, polyolefin Edited by J. E. McIntyre

37 Woollen and worsted woven fabric design E. G. Gilligan

38 Analytical electrochemistry in textiles P. Westbroek, G. Priniotakis and P. Kiekens

39 Bast and other plant fibres R. R. Franck

40 Chemical testing of textiles Edited by Q. Fan

41 Design and manufacture of textile composites Edited by A. C. Long

42 Effect of mechanical and physical properties on fabric hand Edited by H. M. Behery

43 New millennium fibers

T. Hongu, M. Takigami and G. O. Phillips

44 Textiles for protection

Edited by R. A. Scott

45 Textiles in sport

Edited by R. Shishoo

46 Wearable electronics and photonics

Edited by X. M. Tao

47 Biodegradable and sustainable fibres

Edited by R. S. Blackburn

48 Medical textiles and biomaterials for healthcare

Edited by S. C. Anand, M. Miraftab, S. Rajendran and J. F. Kennedy

49 Total colour management in textiles

Edited by J. Xin

50 Recycling in textiles

Edited by Y. Wang

51 Clothing biosensory engineering

Y. Li and A. S. W. Wong

52 Biomechanical engineering of textiles and clothing

Edited by Y. Li and D. X-Q. Dai

53 Digital printing of textiles

Edited by H. Ujiie

54 Intelligent textiles and clothing

Edited by H. Mattila

55 Innovation and technology of women's intimate apparel

W. Yu, J. Fan, S. C. Harlock and S. P. Ng

56 Thermal and moisture transport in fibrous materials

Edited by N. Pan and P. Gibson

57 Geosynthetics in civil engineering

Edited by R. W. Sarsby

58 Handbook of nonwovens

Edited by S. Russell

59 Cotton: Science and technology

Edited by S. Gordon and Y-L. Hsieh

60 Ecotextiles

Edited by M. Miraftab and A. Horrocks

61 Composite forming technologies

Edited by A. C. Long

62 Plasma technology for textiles

Edited by R. Shishoo

63 Smart textiles for medicine and healthcare

Edited by L. Van Langenhove

64 Sizing in clothing

Edited by S. Ashdown

65 Shape memory polymers and textiles

J. Hu

66 Environmental aspects of textile dyeing

Edited by R. Christie

xvi Woodhead Publishing Series in Textiles

67 Nanofibers and nanotechnology in textiles

Edited by P. Brown and K. Stevens

68 Physical properties of textile fibres Fourth edition W. E. Morton and J. W. S. Hearle

69 Advances in apparel production

Edited by C. Fairhurst

70 Advances in fire retardant materials

Edited by A. R. Horrocks and D. Price

71 Polyesters and polyamides

Edited by B. L. Deopora, R. Alagirusamy, M. Joshi and B. S. Gupta

72 Advances in wool technology

Edited by N. A. G. Johnson and I. Russell

73 Military textiles

Edited by E. Wilusz

74 3D fibrous assemblies: Properties, applications and modelling of three-dimensional textile structures

J. Hu

75 Medical textiles 2007

Edited by J. Kennedy, A. Anand, M. Miraftab and S. Rajendran

76 Fabric testing

Edited by J. Hu

77 Biologically inspired textiles

Edited by A. Abbott and M. Ellison

78 Friction in textiles

Edited by B. S. Gupta

79 Textile advances in the automotive industry

Edited by R. Shishoo

80 Structure and mechanics of textile fibre assemblies

Edited by P. Schwartz

81 Engineering textiles: Integrating the design and manufacture of textile products Edited by Y. E. El-Mogahzy

82 Polyolefin fibres: Industrial and medical applications

Edited by S. C. O. Ugbolue

83 Smart clothes and wearable technology

Edited by J. McCann and D. Bryson

84 Identification of textile fibres

Edited by M. Houck

85 Advanced textiles for wound care

Edited by S. Rajendran

86 Fatigue failure of textile fibres

Edited by M. Miraftab

87 Advances in carpet technology

Edited by K. Goswami

88 Handbook of textile fibre structure Volume 1 and Volume 2

Edited by S. J. Eichhorn, J. W. S Hearle, M. Jaffe and T. Kikutani

89 Advances in knitting technology

Edited by K.-F. Au

90 Smart textile coatings and laminates

Edited by W. C. Smith

91 Handbook of tensile properties of textile fibres Edited by A. Bunsell

92 Interior textiles: Design and developments Edited by T. Rowe

93 Textiles for cold weather apparel Edited by J. T. Williams

94 Modelling and predicting textile behaviour Edited by X. Chen

95 Textiles for construction

Edited by G. Pohl

96 Engineering apparel fabrics and garments J. Fan and L. Hunter

97 Surface modification of textiles

Edited by Q. Wei

98 Sustainable textiles Edited by R. S. Blackburn

99 Advanced fibre spinning Edited by C. Lawrence

100 Fire toxicity

Edited by A. Stec and R. Hull

101 Technical textile yarns

Edited by R. Alagirusamy and A. Das

102 Nonwovens in technical textiles Edited by R. Chapman

103 Colour measurement in textiles

Edited by M. L. Gulrajani

104 Textiles for civil engineering Edited by R. Fangueiro

105 New product development in textiles Edited by B. Mills

106 Improving comfort in clothing Edited by G. Song

107 **Textile biotechnology** Edited by V. Nierstrasz

108 Textiles for hygiene Edited by B. McCarthy

109 Nanofunctional textiles Edited by Y. Li

110 Joining textiles

Edited by I. Jones and G. Stylios

111 Soft computing in textiles Edited by A. Majumdar

112 Textile design

Edited by A. Briggs-Goode and K. Townsend

xviii Woodhead Publishing Series in Textiles

- 113 Biotextiles as medical implants Edited by M. King and B. Gupta
- 114 **Textile thermal bioengineering** *Edited by Y. Li*
- 115 Woven textile structure B. K. Behera and P. K. Hari

Engineering fabrics deals with the application of science to reveal the relationships between the raw material, process and the finished product to achieve desired functional or aesthetic effects in the fabric. The success of fabric engineering depends on reliable objective measurements, prediction and control of fabric quality and performance attributes. The prediction of fabric quality and performance attributes requires an efficient methodology to model the inherent non-linear relationships between fibre, yarn and fabric properties. The science of mechanics has provided the ability to predict quantitatively the mechanical performance of structures, but has rarely been applied to textile materials. Various mathematical models, such as geometrical and mechanistic models, based on forces in the fabric, energy minimization principles and empirical relationships between variables, can be used for the analysis of textile structures and processes to explain the underlying principles and predict fabric properties and behavior. Understanding the theoretical relationships between fabric parameters enables the fabric designer to play with different fibers, yarn tex, threads per centimeter and weave to vary texture and other fabric properties. These relationships provide simplified formulae to facilitate calculations which are of value for cloth engineering, problems of structure and mechanical properties.

The authors bring together expertise in fabric structure, mechanical properties of fabric, structure-property relationships and basic principles of design engineering as a tool to support product development, within the framework of fabric structural mechanics. This book is the culmination of teaching, research and methodology in presenting principles and applications related to structure of woven fabrics developed over several years at the Indian Institute of Technology (IIT) Delhi, India. It aims to give readers a good foundation in this area through an in-depth understanding of the principles of physical and mechanical properties of woven textile structures. It is designed as a textbook for graduates and postgraduates in textile technology and also as a reference book for research. The concepts and applications have been demonstrated by liberal use of examples. The book gives a flavor of the basics and builds up to predictive modeling of some fabric properties. The

book is broad-ranging in covering the physical and mechanical properties of the fabric, the fabric making-up process and applications in newer and emerging areas like sports, e-textiles, etc. SI units have been used throughout the book. Each chapter gives an abstract of the contents and is concluded, wherever possible, with how the contents can be used and applied in practical situations.

The book is broadly divided into four sections: Part I Fundamentals of woven fabric structure, Part II Mechanics of woven fabric structure, Part III Design engineering of woven fabrics and Part IV Practical applications. The first four chapters in Part I present the fundamentals of woven fabric structure and some derivatives including some special structures. They discuss the concept of a maximum weavability limit, crimp interchange phenomena, the mechanisms of fabric shrinkage and soft computing applications to predict fabric parameters using the relationship between fabric parameters based on geometrical models. Part II deals with mechanical properties of woven structure in which behavior of fabric under various kinds of deformations is discussed. In Part III, the concept of design engineering, fundamentals of modeling and simulation, modeling methodologies and soft computing application for prediction of fabric properties are described to enable textile researchers to understand the application of various methods for product engineering. Chapters in Part IV demonstrate how fundamental knowledge of theory of fabric structure can be helpful for practical applications in developing fabrics of special construction and achieving various performance characteristics in processing and use.

We wish to thank many students in the Textile Department, IIT Delhi for their unstinting support in making this endeavor a reality. We also owe our indebtness to many others who are not mentioned for their indirect contribution in enhancing our knowledge and giving support. We would like to acknowledge Ms Kathryn Picking, Mr Francis Dodds and Woodhead Publishing Limited for their encouragement and assistance. Professor Hari would like to thank his wife Usha for the support and encouragement to take up this benevolent task for contribution of experience to textile technology. It is hoped that this book will fill the vacuum in the literature on woven structures since the last book on structural mechanics of fibres, yarn and fabrics was published in 1969. We welcome suggestions for any errors that may have crept into the book inadvertently.

B. K. Behera P. K. Hari

Contents

The au	thors	xi
Woodhead Publishing Series in Textiles		xiii
Preface	,	xix
Part I	Fundamentals of woven fabric structure	
1	The basics of woven fabric structure	3
1.1	Introduction: woven fabric formation	3
1.2	Elements of woven fabric structure	5
1.3	Regular and irregular weaves	5
1.4	Modeling different weaves	6
1.5	References	8
2	Geometrical modeling of woven fabric structure	9
2.1	Introduction: woven fabric structure	9
2.2	A simple geometric model of woven fabric structure	9
2.3	Using the model to predict the fabric thickness, cover, mass	
	and specific volume	17
2.4	Modeling maximum fabric cover	19
2.5	Calculating fabric properties: numerical examples	21
2.6	References	29
3	Using a geometric model to predict woven fabric	
O	properties	30
3.1	Introduction	30
3.2	Predicting woven fabric parameters	31
3.3	Predicting the weavability limit	41
3.4	Predicting cover in different woven structures	53
3.5	Calculating fabric properties: numerical examples	57
3.6	Application: calculating tightness values	70
3.7	References	72

vi	Contents	
4 4.1	Woven fabric properties after structural modifications Introduction	73 73
4.1	Crimp interchange phenomena	73
4.3	Maximum fabric extension	75
4.4	Other structural changes	76
4.5	Structural design of woven fabrics using soft computing	76
4.6	Calculating fabric properties: numerical examples	82
4.7	Reference	105
Part II	Mechanics of woven fabric structure	
5	Shrinkage in woven fabrics	109
5.1	Introduction	109
5.2	Mechanisms of fabric shrinkage	110
5.3	The relationship between cloth and yarn shrinkage	112
5.4	Predicting fabric shrinkage	113
5.5	Application of fabric shrinkage model	115
5.6	References	117
6	Yarn behavior in woven fabrics	118
6.1	Introduction	118
6.2	The yarn path in woven fabrics and inter-yarn forces	118
6.3	The crimp balance equation	121
6.4	Predicting the yarn path in woven fabrics	122
6.5	The effect of settings on yarn behavior	127
6.6	Crimp interchange and crimp balance equations	128
6.7	Calculating fabric properties: numerical examples	131
6.8	Practical applications	136
6.9	References	136
7	Tensile behavior of woven fabrics	137
7.1	Introduction	137
7.2	Fundamentals of axial deformation	138
7.3	Tensile properties of woven fabrics	142
7.4	Castigliano's theorem	149
7.5	The sawtooth model	152
7.6	Fabric extension in the bias direction	157
7.7	Factors affecting the tensile properties of woven fabrics	162
7.8	References	163
8	Buckling behavior of woven fabrics	164
8.1	Introduction	164

	Contents	vii
8.2	Buckling deformation of woven fabric	165
8.3	Buckling behavior of cloth under large deformation	166
8.4	Hysteresis in fabric deformation	172
8.5	Practical applications	172
8.6	References	172
9	Bending behavior of woven fabrics	173
9.1	Introduction	173
9.2	Fundamentals of bending deformation	174
9.3	Modeling bending behavior	176
9.4	The bending behavior of woven fabrics	178
9.5	Bending hysteresis	187
9.6	The effect of setting on bending behavior	190
9.7	Bending recovery	191
9.8	Bending at higher curvatures	191
9.9	The time effect in bending deformation	191
9.10	Bending in the bias direction	192
9.11	Practical applications	196
9.12	References	196
10	Creasing in woven fabrics	197
10.1	Introduction	197
10.2	Mechanisms of creasing	197
10.3	Deformation and crease recovery behavior	199
10.4	The effect of time on deformation and crease recovery	202
10.5	Factors affecting crease recovery of fabrics	203
10.6	References	204
11	Shear behavior of woven fabrics	205
11.1	Introduction	205
11.2	Fundamentals of shear deformation	206
11.3	Shear deformation in woven fabrics	207
11.4	Shear properties in various directions	215
11.5	Predicting shear properties: practical applications	216
11.6	References	216
12	Compression behavior of woven fabrics	217
12.1	Introduction	217
12.2	Fundamentals of compression	218
12.3	The compression behavior of textile structures	218
12.4	The exponential behavior of compressible fabrics	222
12.5	The low stress pressure–thickness curve	223
12.6	Predicting compression in woven fabrics	223

viii	Contents	
12.7 12.8	Practical applications References	229 229
13	Friction and other aspects of the surface behavior	
	of woven fabrics	230
13.1	Introduction	230
13.2	Fundamentals of friction and abrasion	231
13.3	Measuring roughness and other surface properties of	
	woven fabrics	232
13.4	Factors affecting abrasion resistance	236
13.5	References	241
Part II	I Design and engineering of woven fabrics	
14	Textile product design methods	245
14.1	Introduction	245
14.2	The design process for textiles	246
14.3	Traditional design methods	247
14.4	Key issues in the design of textile products	248
14.5	Computer-assisted design (CAD) of woven fabrics	250
14.6	Design engineering using modeling	251
14.7	Reverse engineering	252
14.8	Expert systems in textile product design	252
14.9	References	257
15	Modeling for textile product design	260
15.1	Introduction	260
15.2	Principles of mathematical modeling	260
15.3	Modeling methodologies	262
15.4	Deterministic models	262
15.5	Nondeterministic models	264
15.6	Validation and testing of models	272
15.7	Summary	273
15.8	References	273
16	Building predictive models for textile product design	275
16.1	Introduction	275
16.2	Building empirical, mathematical and artificial neural	
	network (ANN) models	276
16.3	Evaluating mathematical, empirical and artificial neural	
	network (ANN) models	281
16.4	Summary	288
16.5	References	290

	Contents	IX
17	Modeling for woven fabric design	292
17.1	Introduction	292
17.2	Types of computer modeling in fabric design and	
	manufacture	292
17.3	The application of modeling to woven fabric design	294
17.4	Modeling structure-property relationships: elongation	
	and bending	300
17.5	Modeling of woven fabric texture	302
17.6	Limitations of modeling	303
17.7	References	304
Part I	V Practical applications	
10	Acception the confect of wayner febrical febric handle	309
18 18.1	Assessing the comfort of woven fabrics: fabric handle	309
18.2	Introduction The objective measurement of comfort	310
18.3	The objective measurement of comfort Measuring fabric handle	311
18.4	Primary and total fabric handle	317
18.5	Factors affecting fabric handle	321
18.6	Summary	326
18.7	References	326
10	Accessing the comfort of wayon fabrics: thermal	
19	Assessing the comfort of woven fabrics: thermal properties	330
19.1	Introduction	330
19.1	Thermal comfort in humans	331
19.3	The function of textiles in enhancing thermal comfort	332
19.4	Heat transfer through woven fabrics	333
19.5	Moisture vapor transfer through woven fabrics	335
19.6	Measuring thermal comfort	340
19.7	References	341
20	Modeling woven fabric drape	343
20.1	Introduction	343
20.2	Two-dimensional and three-dimensional drape	343
20.3	Subjective and objective measurement of drape	347
20.4	Drape measurement by digital image processing	348
20.5	The relationship between drape and the mechanical	
	properties of woven fabrics	352
20.6	Low stress mechanical properties of woven fabrics and	
	drapeability	353
20.7	Modeling of woven fabric drape	354