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Preface

The development of mineralogy, the evolutionary changes in compre-
hending the mineral substance of the earth are closely associated with the
progress of research methods.

Over a space of more than two and half centuries, from the
goniometry of the mineral crystals to microscopic petrography and
optical mineralogy, to crystal structure determinations, electron micros-
copy and electron diffraction and finally investigations into their electri-
cal, magnetic and mechanical properties, all this has led to the formation
of the existing system of mineralogy, its notions, theories and to a
proper description of minerals.

However, no matter how great the variety of methods employed in
mineralogy, they all come to a few aspects of substance characteristics.
These are methods of determining the composition, structure and proper-
ties of the minerals. Thus the X-ray microanalyzer, the atom-absorption,
neutron-activation, chromatographic and other analyses open up new
opportunities for determining nothing else but the elementary com-
position of minerals.

In the last 10 to 15 years the scope of these analytical possibilities has
been considerably enlarged by an addition of the spectroscopy of solids
methods which help expose a new facet in the cognition of the substance
in general and of the mineral one, in particular. The spectroscopy of
solids includes electron paramagnetic resonance, nuclear magnetic and
nuclear quadrupole resonance, Mdssbauer (y-resonance) spectroscopy
(all of them owing their origin to the discovery of new physical
phenomena), X-ray and electron spectroscopy (that began developing
after construction and improvement of new spectrometer types), optical
spectroscopy and luminescence (which have assumed quite a new signific-
ance due to use of crystal field theory).

Embracing all regions of the spectrum, from the gamma and X-ray
and throughout the ultraviolet, visible, infrared, to the superhigh-
frequency and radio-frequency, being based on the nuclear, electron,
vibrational and spin transitions and making use of radically different
types of spectrometers, these methods have one major common feature
that distinguishes them from all other research procedures.

The salient feature common to all branches of the spectroscopy of
solids is the observation of atoms in a state of chemical bonding within
concrete crystals and compounds. This gives a complete characterization
of crystals and compounds, viz. their composition, the arrangement of
atoms in the structure, properties of the atoms in a given crystal structure
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(electronic structure), and properties of the crystal as a whole, determined
by the composition, atomic and electronic structure.

Spectroscopic parameters present the only direct possibility to mea-
sure and define the actual states of chemical bonding, a natural experi-
mental groundwork forming a basis for the current theories of chemical
bonding, such as the crystal field, molecular orbitals, and energy band
theories which, in their turn, are at the same time the spectroscopic
theories.

The spectroscopy of solids not only opens up a new chapter in the
understanding of the substance, but within the framework of the visible
“physical oecumen”, if one may put it this way, it appears as conclusive,
synthetizing, and unique in describing causal relationships among the
composition, structure, and properties, and enables it to comprehend and
assess these properties. The crystals themselves and compounds are a
product subsequent to self-consistency of the electronic properties of the
atoms, the one that has led to a given arrangement of the atoms in the
crystal structure and has imparted specific features to them in the crystal,
as well as shaped the properties of the crystals themselves.

In all directions of these spectroscopic methods, the detailed and
thorough investigations have been effected in mineralogy at the most
advanced technical and theoretical level. Both fundamental data and
those relevant to individual rock-forming and ore minerals have been
already obtained.

Thus, in addition to a change in the general approach to the chemical
binding in minerals, X-ray and electron spectroscopy helped trace
molecular orbital diagrams for rock-forming silicates.

The nuclear-magnetic resonance spectra furnished a basis for measur-
ing intracrystalline fields, while from the electron paramagnetic re-
sonance spectra the degree of ionicity — covalency — has been determined.
In the case of sulfides, the bonding states have been estimated according
to the Mossbauer and optical reflectance spectra and for the arsenic,
antimony, bismuth sulfosalts — on the ground of the nuclear quadrupole
resonance data.

Spectroscopic methods are of aid in establishing the distribution of
cations in nonequivalent positions within the structures of olivines,
amphiboles, mica, and other minerals, with some of these serving as a
means for setting apart geothermometers, determining types and locali-
zation of water in minerals, obtaining all the information about the
impurity elements, interpreting causes accounting for colors and lumines-
cence of minerals and helping describe in great detail the state of iron (its
valent states, magnetic properties, supermagnetism of ultra-fine particles,
properties of diamond and apatite with implanted iron, etc.).

The results thus made available are used in subdividing intrusive
massifs, sedimentary and metamorphic complexes, separating facial rock
varieties, determining relative ages, temperature conditions attending
their formation and educing prospective indications for exploration.
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It was the electron paramagnetic resonance alone that helped dis-
cover in minerals an abundance and a great variety of radiation electron-
hole centers and to interpret their models. By this time such centers have
been shown to be of geological and prospective value, to influence
flotation of minerals, determine the photochromatism of some crystals (of
sodalites in particular), utilized in T.V. screens, to define the mechanism
of thermoluminescent dosimetry, specify the choice of radiation-stable
lasers, piezoelectrics, the service-life of reactor materials, to intensify and
change the coloration of gems. The entire complex of spectroscopic
methods occupies a place of prime importance in continuing investi-
gations of lunar rocks and minerals.

In many branches of the spectroscopy of solids, natural minerals and
their synthetic analogs represent the best-studied systems, such, for
instance, as those of fluorite, scheelite, apatite, ruby in the electron
paramagnetic resonance and luminescence, spinels-chromites-ferrites in
the Mossbauer spectroscopy.

The introduction of new methods into mineralogy pre-supposes each
time their adaptation conformably to features specific for mineral matter
and to problems of mineralogy, petrology, lithology, ore deposits geology,
prospecting and enrichment of raw mineral materials. In the past decade
the potentialities and trends of each one of the spectroscopic methods in
this cycle of research have taken their main shape; the notions, methods
of measurement and interpretation have been selected and data covering
major mineral groups accumulated. An attempts at systematic pre-
sentation of all this material has been made in this book.

A general theoretical introduction to all sections of the book is the
crystal field theory and molecular orbital theory, discussed in the
preceding book of the author!, where subject to consideration was also
the optical absorption spectroscopy of minerals.

The bibliography includes selected works which, however, reflect all
the principal trends of research in the domain of spectroscopy of the
minerals. References to works cited in Physics of Minerals and Inorganic
Materials are almost omitted here and, therefore, one should look there
for literature sources touching upon related problems (spectroscopy and
chemical bonding, spectroscopy and crystal field, molecular orbital
theories, etc.).

The author wishes to express his indebtness and gratitude to L.V.
Bershov, V.M. Vinokurov, I.N. Penkov, A.N. Platonov, A.N. Taraschan,
S.A. Altshuler, M.M. Zaripov, M.I. Samoilovich, V.I. Nefedov, A.M.
Bondar, V.O. Martirosyan, M.L. Meilman, R.M. Mineeva, A.R.
Mkrtchyan, M. Ya. Scherbakova, A.V. Speransky for fruitful discussions
of many issues concerned with the spectroscopy of minerals which
proved of great help to the author in writing this book.

Moscow, April 1979 A.S. MARFUNIN

1 A.S. Marfunin: Physics of minerals and inorganic materials. An introduction.
Berlin, Heidelberg, New York: Springer 1979.
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1. Mossbauer (Nuclear Gamma-Resonance) Spectroscopy

1.1 Basic Principles and Experimental Arrangement

1.1.1 Isomer Nuclear Transitions and Gamma-Ray Emission

A nucleus, like an atom, has discreet (quantized) ground and excited levels, the
transition from the upper to the lower level being accompanied by gamma-ray
emission. Nuclear gamma emission line spectrum is similar in this respect to atomic
optical emission spectrum occurring as a result of the transition from the upper
to the lower electronic level.

The period during which the nucleus continues to stay in any excited state
determines its mean lifetime. This is the time necessary for the transition from a
given to the ground, or some other lower-lying excited level.

Two nuclei with equal charge and mass number, but in different excitation
states with easily measurable lifetimes, are called isomer nuclei. By isomer states
are understood excited states of a nucleus with a fairly long lifetime (typical values
of the mean lifetimes of the isomer states of the nuclei used in the Mossbauer
spectroscopy are 107°-1071° s).

The isomer transitions that are used in Mossbauer spectroscopy are shown in
Figure 1 for nuclei of iron, iridium and tin. Thus, gamma-emission of a Fe*” nucleus
with energy of 14,400 eV occurs as a result of an isomer transition from the excited
state of the Fe’” nucleus with a nuclear spin I = 3/2 (for this excited state), mean
lifetime ¢ = 1.4-1077, and energy E = 14,400 eV to the ground state of a Fe’”
nucleus with a nuclear spin / = 1/2. The nuclear spins of the ground and excited
states determine the splitting of nuclear levels in crystalline fields, as well as in
external electric and magnetic fields; the lifetimes determine the natural width of
the lines.

Since in the case of Fe®” an isomer with energy of 14,400 eV has a lifetime of only
about 1077 s, in practice a radioactive cobalt isotope Co’” with a half-life of 270
days is taken as a source of gamma radiation; then through electron capture, Co*’
transforms into an excited isomer Fe®’. Thus, following the cobalt decay, an iron
isomer emitting gamma-rays emerges directly in the spectrometer.

Similarly, upon decay of radioactive osmium-191, iridium isomers emerge. In
the case of tin, its isomer with a long lifetime (250 days) is used.

1.1.2 Resonance Fluorescence

1. Atomic (optical) resonance fluorescence. Should a vessel containing Na vapors
under low pressure be irradiated by the light of the yellow line of the spectrum of
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J 57 Fig. 1. Isomer transitions of the Fe’’, Ir'%,
/) Co” (270 days) Sn''® nuclei. Shown are transitions whose gam-
ﬂ MeV ma-emission is used in the Mdssbauer spectros-
_ copy: for Fe’ = 14.4 keV, for Ir' = 129.0
% ] 157 KeV keV and for Sn'!® = 23.8 keV; 7 is transition
o . o time determining the natural line width; I is
9%y 91% p-emission nuclear spins in ground and excited states
=/ 144KeV; T=1410"s
-’/2 0; Feﬂground state
191
_9/2 0s™ (16days)
o]
M &~ eV
+ 8y — 129KeV; T=143-10"s
?
+3/2 ———0: I'"ground state

Sn"™. isomer(250 days)
ity — ay:

89 kev
?
+3y > 288KeV;T=2810"s
+1/y ——0; Sn" ground state

the same Na (589 nm), absorption of this radiation by the Na vapors will then take
place, owing to transition from the lower level 2S,,, to the upper one 2P, 3,
followed by emission of yellow light as a result of the reverse transition. This lies at
the base of the phenomenon of resonance fluorescence (equal frequencies of
primary and secondary emission).

2. Nuclear gamma-resonance fluorescence in the case of free atom nuclei. If
Fes7 gamma emission, occurring as a result of an isomer transition from the level 3/2
with energy of 14,400 eV to the level 1/2 of the ground state (see Fig. 1), is directed
against the free atom nuclei of the same Fe®?, there should then be observed the
resonance fluorescence, due to transition from the ground state 1/2 to the same level
of 3/2. This, however, does not happen.

3. The reason for the difference in conditions under which atomic (optical) and
nuclear (gamma) resonance fluorescence are observed is as follows. The emission
of a gamma quantum by the nucleus is followed by a nuclear recoil (as a barrel recoil
after a shot), in which a part of the energy of the transition of the nucleus from the
excitation to the ground level is spent. An equal amount of energy is spent in accel-
erating the absorption nucleus (absorber). Hence, the gamma-quantum energy
fails to equal the difference between the absorption nucleus levels, but is lesser by
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the amount of double energy of recoil. The latter is much greater than the width
of the line, which is determined by the diffuseness of the excited level and, for this
reason, conditions for resonance (equal energy difference between levels of the
emitting and absorbing nuclei) are not complied with, and in this case no resonance
gamma fluorescence is observed.

Thus for a Fe’” nucleus with emission energy of E = 14,400 eV, the recoil
energy Ris0.19 - 107% eV, and the line width' I" = 4.6 - 10~ V.

In the case of the Na atom for the D line with A = 589 nm (16.978 cm™!) E =
2.1 eV, R=10"" eV, I'=4.4 1078 Accordingly, here the line width is much
smaller than the recoil energy (2R < I'), and recoil does not stand in the way of
resonance fluorescence. For the Fe3” nucleus that yields emission of a far greater
energy, the recoil energy 2R is accordingly much higher than for Na atom (though
it constitutes only a negligent part of the total emission energy), being by far in
excess of the line width, i.e., 2R > I'. For this reason no resonance fluorescence
occurs here.

1.1.3 Mossbauer Effect: a Recoilless Gamma-Fluorescence

It has been possible to eliminate nuclear recoil during emission and absorption of
gamma quanta. The essence of the Mdssbauer effect consists in placing a nucleus in
a crystal, when the recoil impulse is borne not by a single nucleus but by the whole
of the crystal lattice, the emission and absorption of gamma-quanta by nuclei
thus fixed taking place with practically no energy losses in recoil. This permits it
to obtain resonance gamma fluorescence as mentioned above and as exemplified in
the case of Fe*’. To this end it suffices for the emitting nucleus (Fe®’, Os'®!, Sn!!°
and others) and the absorber of the same composition to form only part of a solids.

Here, a major property of recoilless gamma emission becomes manifest, i.e.,
an extremely small width of the line by comparison with emission energy. Thus for
Fe’” I'=4.6 - 10%eV with gamma-emission energy E = 14,400 eV. The I'/E
ratio equals 3.2 - 10713, This means that the energy of the emission can be deter-
mined to an accuracy of the order of 1073, Because of this, recoilless gamma emis-
sion can be measured most exactly of all regions of the electromagnetic spectrum.

Doppler Velocity. Owing to the apparent difference in the energy of emitting
and absorbing nuclei and disturbed resonance conditions, it is possible to record
the slightest deviations in the chemical state of absorbers. The conditions of re-
sonance have to be re-established in order to assess and measure all these devia-
tions. This is accomplished by using the Doppler effect, whose essence consists in
the emission source moving toward the observer at a velocity of v, and the emission
energy increasing, while with the source moving away from the observer it dimin-
ishes by a value of 4E = +wv/c - E.

! Conformable to Heisenberg’s uncertainty relation 7" = A, where z is mean lifetime of
the state; I"is uncertainty of the excitation state energy that determines the width of the
excitation state energy that determines the width of the excitation level, and consequent-
ly that of the line; # = h/2w, where 4 is Planck’s constant. For Fe’’ t = 1.4 - 107 s
(Fig.1);h = 1.05 - 10-¥erg. Hence I' = % [t = 0.75 - 10~2erg = 4.6 - 10~%V.
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The difference in the emission and absorption nuclear energy can be offset by
displacing the specimen (absorber) with varying speed relative to the source.

For the Fe’” nucleus, the speed of the relative motion of the absorber and the
source v = 1 mm s~! corresponds to an energy difference:

1 mm s™! _ .
310" mms— 14,400 eV = 4.8 - 1078 eV.

AE = 4
For Sn'*? (E = 23,800 ¢V) 1 mm s™! = 7.9 - 107® eV; for I'*' (E = 129,000
eV) I mms™ =43 -107"eV.

1.1.4 Experimental Arrangement for Observing the Nuclear Gamma-Resonance
(Méssbauer Spectrometer)

As with any other spectra, Méssbauer spectra are measured by using spectrometers
consisting of an emission source, a specimen (absorber), and a detector of the
resonant gamma-rays transmitted through (or emitted, or scattered by) the speci-
men (absorber). A necessary component for the Mossbauer effect is a system capable
of moving the specimen (absorber) relative to the source (Fig. 2).

: 2
% - E - M 4
l—
J
Fig. 2. Experimental arrangement for measuring the Mossbauer absorption spectrum.

1, Source of gamma-emission; 2, specimen containing the same nucleus as the source;
3, the motlon system; 4, gammaquanta counter

The discovery of the Mossbauer effect has provided researchers with a source
of monochromatic recoilless gamma emission. Radioactive isotopes, Co’?, for
example, are embedded into metallic iron, stainless steel, platinum and other host
matrices suitable for preparation of a given source of emission. According to
patterns shown in Figure 1, they produce recoilless gamma emission.

A distinctive feature of Msssbauer spectra is the fact that a test specimen
(absorber; in the form of powder or a monocrystal) reveals resonance fluorescence
of the same nucleus (the same isotope) which is incorporated in the source and
emits gamma-rays. Thus, by means of the Fe’” emission, it is possible to investigate
only the ironmaking part of the specimen-absorber (Fe’” isotopic abundance is
2.17%;), whereas to observe the spectrum of tin, a Sn'!? source is needed, and so on.

The spectra of absorption, emission or scattering of gamma-rays by the speci-
men, can be measured but it is the absorption spectrum that is commonly measured.

Detecting is done by means of a gamma counter, whose basic component is
usually Nal (TI) scintillation crystal mounted on a photomultiplier tube, which con-
verts weak light flashes into sufficiently strong electric pulses.
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The specimen-absorber motion relative to the source (to equalize, by means of
the Doppler effect, the energy of gamma quanta emitted by the source’s nuclei and
absorbed by the specimen), and the measurement of Doppler velocity of this
motion are performed by using a carriage traveling at controlled speed. Depending
on the latter, two types of spectrometer are distinguished: with constant velocity,
and with constant acceleration. In the first the absorber moves with constant speed,
and during displacement of the absorber, gamma quanta that enter the detector on
traversing the absorber are counted. Thereupon, a new value for the velocity is
recorded, the counting is repeated, and so on.

In the other type of spectrometer, the motion proceeds at a variable velocity,
gradually and smoothly, increasing and decreasing in a set regularity. Special radio-
technical devices—multichannel analyzers—accept the pulses and record the
number of gamma quanta transmitted by the absorber during successive velocity
intervals. Mechanical and electromechanical spectrometers are also distinguished,
depending upon the mode of the motion.

Thus, the Mdssbauer spectrum is the velocity spectrum and represents the
number of gamma quanta recorded by the counter at different Doppler velocities
of the absorber relative to the source.

The minimum of the gamma-quanta transmission and, accordingly, their
maximum absorption by the specimen are in line with and correspond to the
Doppler velocity at which the resonance absorption occurs. The velocity matching
the maximum of absorption characterizes the degree of difference in the environ-
ment of the specimen’s nucleus, and that of the source (when absorber and source
nuclei are identical, the velocity at which maximum absorption is observed is nil).
The values obtained for the maximum absorption shifts are relative and in this
connection the source against which measurements are effected should be men-
tioned (for Fe*” in relation to a Fe” source in stainless steel, for instance). The
position of the absorption lines is usually indicated in terms of velocity in mm s,
or cm s~!, but this can be easily rescaled in eV.

1.1.5 Development of the Method

The Mdssbauer discovery was preceded by research into the possibilities offered by
gamma-fluorescence of the free atom nuclei. First, gamma fluorescence could be
obtained by means of Doppler acceleration of the emission source relative to the
absorber, by centrifugation of the latter at a velocity of hundreds of m/s. Broaden-
ing of lines due to thermal vibrations (leading to Doppler shifting of the emission
frequency and, consequently, to broadening of the lines) were also studied. Thus,
the magnitude of nuclear recoil R with emission of a gamma quantum of Ir's!
amounts to 0.05 eV, whereas the Doppler width of the line (due to thermal vibra-
tions) is as great as 0.1 eV. Here, resonance fluorescence occurs in the case of free
iridium atom nuclei.

While investigating resonant scattering of this isotope gamma emission, Moss-
bauer discovered in 1958 the phenomenon of nuclear recoilless gamma-resonance
fluorescence, achieved by fixing the source and absorber nuclei in solids. Lamb’s



