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Notation and conventions

p: a rational prime number

k = Fy: the finite field of ¢ elements of char(k) =p>0
k* = (z): the multiplicative group of k with a fixed generator z
k: the algebraic closure of k

(E*)™ i= {c™ | c € k*}

' = Gal(k/k): the Galois group of k over k

W = W(k): the ring of infinite Witt vectors over k

K = K(k): the field of quotients of W

v: a p-adic valuation of Q, normalized by v(q) = 1

F: the Frobenius morphism

V: the Verschiebung morphism

®: the Frobenius endomorphism

m and n: positive integers such that m > 3, (myp)=1landn>1
¢: a prime such that (¢, m) =1

Q;: the field of ¢-adic rationals

Zq: the ring of ¢-adic integers

| |¢": the £-adic valuation of Q normalized by fet=1o

|z|: the absolute value of z € R

L = Q(¢): the m-th cyclotomic field over Q where ¢ = e2ri/m
G = Gal(L/Q): the Galois group of L over Q, which is isomorphic to (Z/mZ)*
#(m): the Euler function

ix



X Notation and conventions

€ =(C0,C1y-++,Cns1) € K X -+ x k*: the twisting vector

n + 2 copies

V = Vi'(c): the diagonal hypersurface £ ;X = 0 c PP+ with the
twisting vector c of degree m and dimension n

X = Vi*(1): the Fermat variety 24 X* = 0 ¢ PP+ of degree m and
dimension n with the trivial twist ¢ = 1

My the group of m-th roots of unity in C (or in k)

® = @7 = pun+?/A: a subgroup of the automorphism group Aut(V) of ¥

®: the character group of &

/A = A7 the set of all characters a = (ag, ay,...,an41) € & such that
ntl

a; € Z/mZ, a;i #0 (mod m), and > ai=0 (modm).

=0

For a = (ag,ay,...,a,41) € AT,

llall = <345 (%) — 1 where (z) is the fractional part of z € Q

Pa: the projector defined in Definition 3.1

j(a): a Jacobi sum of dimension n and degree m

d(c,a): a twisted Jacobi sum of dimension n and degree m

a: an induced character in %™, , for some d > 1

j(a): an induced Jacobi sum of an appropriate dimension and degree m

d(€,a): an induced twisted Jacobi sum of an appropriate dimension and degree
m

A = [a]: the (Z/mZ)*-orbit of a

Pa=[a] = Tacapa

A = [a]: the (Z/mZ)*-orbit of &

M 4: a Fermat motive of degree m and dimension n

Va: a twisted Fermat motive of degree m and dimension n

M ;: an induced Fermat motive of degree m and an appropriate dimension

Vj4: an induced twisted Fermat motive of degree m and an appropriate dimen-
sion

#5: the cardinality (resp. order) of a set (resp. group) S
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B ={ae A" |J(c,a) = ¢"/?} with n even

B, = {ae€A"|J(c,a)/qg"/* = a root of unity in L} with n even
¢ =B, \ By

o =AT\ BY

O(€): the set of (Z/mZ)*-orbits in €

O(D7'): the set of (Z/mZ)*-orbits in D

ea(Vx) = #0(C7)

Ad(Vx) = #0(Dy)

6a(Ve) = €a(Vx) + Aa(Vi)

Let M be a I'-module where I' = Gal(k/k) with the Frobenius generator ®.

MT: the kernel of themap ® —1: M — M
Mry: the cokernel of themap ® —1: M — M
Miors: the torsion subgroup of M

O: the structure sheaf of V and X

§2: the sheaf of differentials on V and X

WS the sheaf of de Rham-Witt complexes on V and X
Gyn: the multiplicative group scheme

G,: the additive group scheme

Arithmetical invariants of V and X are rather sensitive to the fields of def-
inition. Whenever the fields of definition are to be specified, subscripts are
adjoined to the objects in question. For instance,

pr(Vk) (resp. pr(Vg): the r-th combinatorial Picard number of V defined over
k (resp. k)

pr(Vk) (resp. p.(Vi)): the dimension of the subspace of H?(V;, Qe(7)) gener-
ated by algebraic cycles of codimension r on V defined over k (resp. k) where £
is a prime # p, which we call the r-th (geometric) Picard number of V defined
over k (resp. k)

Br"(V) (resp. Br"(Vg)): the r-th “Brauer” group of V over k (resp. k)
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Introduction

Let X = X} be a smooth projective algebraic variety of dimension n defined
over a finite field k = I, of characteristic p. The zeta-function of X (relative
to k) has the form

_ Pi(X;q7 ) B(X,q0%) . .- Pan1(X,0%)
Z(X,q %) =
X0 = B X, VB, ). P(X, 0)

where P;(X,T) € 1+ TZ|T)] for every ¢, 0 < i < 2n, and has reciprocal roots
of absolute value ¢*/2. Taking i equal to an even integer 2r, we see that for
any integer r between 0 and n

Cx(r)

Z(X1 q—s) &= (1 ar qr—s)p.-(X)

as s —r7T

where C'x(r) is some rational number and p,(X) is an integer (called the r-th
combinatorial Picard number of X = Xj). In this book, we obtain information
about these two numbers for algebraic varieties that are especially simple.

There are standard conjectural descriptions of the numbers p,(X) and
Cx(r) that connect them with arithmetic and geometric invariants of X. Let
k be an algebraic closure of k and let Xz := X x; k be the base change of
X from k to k. Let £ be any prime different from p = char(k). Let g} ,(X)
denote the dimension of the subspace of the /-adic étale cohomology group
H?(Xg,Q(r)), generated by algebraic cycles of codimension r on X defined
over k, and let

/ - /
pr(X) == lg?g( pr,l(X)'

(The numbers p ,(X) are in fact presumed to be independent of the choice of
the prime ¢.) We call p/.(X) the r-th Picard number of X = Xj. It is known
that pl.(X) < p,(X), and one conjectures that they are in fact equal:

CONJECTURE 0.1 (THE TATE CONJECTURE) With the definitions above, we
have

pr(X) = p(X).
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This is known to hold in a number of special cases (rational surfaces,
Abelian surfaces, products of two curves, certain Fermat hypersurfaces, etc.)

Picard numbers are, of course, very sensitive to the field of definition. In
various contexts we will want to compare the Picard number of a variety X
over k to the Picard number of its base change to extensions of k. As one
runs over bigger and bigger finite extensions of k, the combinatorial Picard
number eventually stabilizes. We will refer to the latter number as the r-th
(combinatorial) stable Picard number of X and denote it by p,(X).

As for the rational number Cx(r), a series of conjectures has been formu-
lated by Lichtenbaum [Li84, Li87, Li90] and Milne [Mil86, Mil88] (see also
Etesse [Et88]). (The conjectures concern the existence of “motivic cohomol-
ogy” and in particular of certain complexes of étale sheaves Z(r).)

CONJECTURE 0.2 (THE LICHTENBAUM-MILNE CONJECTURE) Assume that
the complex Z(r) ezists and that the Tate conjecture holds for X = Xy. Then

COx(r) = £x(X, Z(r)) - X7
where
X(X, 0,7) := rx(X, Ox) = (r — x(X, Q%) + -+ £ x(X, Q%)
and x(X, Z(r)) is the Euler-Poincaré characteristic of the complez Z(r).

For surfaces, this formula is equivalent to the Artin—Tate formula, which
is known to be true whenever the Tate conjecture holds. For higher dimen-
sional varieties, the conjectural formula is known to hold only in some special
cases. Therefore, providing examples related to this conjecture seems to be of
considerable interest.

The purpose of these notes is to offer a testing ground for the Lichtenbaum-
Milne conjecture for diagonal hypersurfaces, explicitly evaluating the special
values of zeta-functions at integral arguments. This is done by passing to
the twisted Fermat motives associated to such varieties. Our investigation is
both theoretical and numerical; the results of our computations are recorded
in Appendix A.

We now proceed to set up the case we want to investigate. Let m and n be
integers such that m > 3, (p,m) =1 and n > 1. Let ¢ = (¢cg,¢1,*** ,Cn41) be
a vector where ¢; € k* for each i = 0,1,...,n+ 1, and let V = V™(c) c Pi*!
denote the diagonal hypersurface of dimension n and of degree m defined over
k = F, given by the equation

oXP+aXP+ -+ e X, =0. (*)

We denote by X := V*(1) the Fermat hypersurface of dimension n and of
degree m defined by the equation (*) with ¢ = (1,1:--,1) = 1. We call
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the vector ¢ a twisting vector. Note that the vector ¢ = (co,c1,...,Cns1)
is only defined up to multiplication by a non-zero constant, and further, that
changing any of the coefficients by an element in k* which is an m*" power gives
an isomorphic variety. We will call two such choices for ¢ equivalent. We will
denote the set of all vectors ¢ = (cp, ..., cnt1), considered up to equivalence,
by C.

Throughout the book, we impose the hypothesis that k£ contains all the
m-th roots of unity, which is equivalent to the condition that ¢ = 1 (mod m).

The diagonal hypersurface V = V*(c) is a complete intersection, and its
cohomology groups are rather simple (cf. Deligne [De73|, Suwa [Su93]). Its
geometry and arithmetic are closely connected to those of the Fermat hyper-
surface, X = V*(1). In fact, the eigenvalues of the Frobenius endomorphism
for X are Jacobi sums, and those for V are twisted Jacobi sums, that is, Ja-
cobi sums multiplied by some m-th root of unity. Furthermore, the geometric
and topological invariants of V, such as the Betti numbers, the (z, j)-th Hodge
numbers, the slopes and the dimensions and heights of formal groups are inde-
pendent of the twisting vectors c for the defining equation for V, and therefore
coincide with the corresponding quantities for X. By contrast, arithmetical
invariants of V (that are sensitive to the fields of definition), such as the Pi-
card number, the group of algebraic cycles, and the intersection matrix, differ
from the corresponding quantities for X'. Relations between these arithmetical
invariants of V and the corresponding invariants of X' are one of our main
themes.

To understand the arithmetic of a diagonal hypersurface V = V(<) of
dimension n and degree m with twist ¢, we use the natural group action to
associate to it a family of motives which correspond to a particularly natural
decomposition of the cohomology of V, which we call the motivic decomposi-
tion. We call these (not necessarily indecomposable) motives twisted Fermat
motives, and the direct sum of these motives is the motive attached to V itself.
The arithmetic of these motives “glues together” to form the arithmetic of V.

Let V4 denote a twisted Fermat motive. We say that V4 is supersingular if
the Newton polygon of V4 has a pure slope n/2; V, is ordinary if the Newton
polygon of V4 coincides with the Hodge polygon of V4; and V4 is of Hodge-
Witt type if the Hodge-Witt cohomology group H™ #(V4, W) is of finite type
for every i, 0 < i < n. (If V, is ordinary, then it is of Hodge-Witt type, but the
converse is not true.) Then passing to diagonal hypersurfaces V, we say that
V is supersingular, ordinary, and of Hodge-Witt type if every twisted Fermat
motive V4 is supersingular, ordinary, and of Hodge-Witt type, respectively.
Note that these properties are not disjoint at the motivic level (that is, motives
can be ordinary and supersingular at the same time).

The set of all diagonal hypersurfaces has a rather elaborate inductive struc-
ture, relating hypersurfaces of fixed degree and varying dimension. We focus
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on two types of these: the first relating hypersurfaces of dimension n and
n + 2, and the second relating hypersurfaces of dimensions n + 1 and n + 2.
This inductive structure is independent of the twisting vectors of the defining
equation for V. As before, the inductive structure can be considered at the
motivic level, and the arithmetic and geometry of motives are closely related
to those of their induced motives of higher dimension. Cohomological realiza-
tions of these structures shed light, for instance, on the Tate conjecture and on
special values of (partial) zeta-functions. (For details, see Chapter 4 below.)
This inductive structure also plays a major role in the work of Ran and Shioda
on the Hodge conjecture for complex Fermat hypersurfaces (see [Ran81] and
[Sh79a, Sh79b], for example).

For diagonal hypersurfaces V = V™(c) of odd dimension n = 2d + 1, the
Tate conjecture is trivially true (Milne [Mil86]). For diagonal hypersurfaces
of dimension n = 2, the Tate conjecture can be proved for any twist c over k
on the basis of the results of Tate [Ta65] and Shioda and Katsura [SK79] for
Fermat surfaces X" over k. We obtain the following result.

THEOREM 0.3

Let V = Vj*(c) be a diagonal hypersurface with twist ¢ and let X = V™(1)
be the Fermat variety, both of degree m and dimension n = 2d over k =
F,. Let p4(V) and py(X) denote the d-th combinatorial Picard number of
V and X, respectively, and let p,(V) and p,(X) be the corresponding stable
combinatorial Picard numbers. Then the following assertions hold:

1. The combinatorial stable Picard numbers are given by

Pa(V) = Pa(X) =1+3_ Bu(Va)

where the sum runs over all supersingular twisted Fermat motives V,,
and B,(Va) denotes the n-th Betti number of V,.

2. Assume that m is prime, m > 3. Then
pa(Xe) = pa(V).
That is, the actual d-th combinatorial Picard number of X}, is stable.
3. Assume that m is prime, m > 3. Then
pa(Vk) < pa(X).
Furthermore, the following are equivalent:

(a) Vi and X, are isomorphic
(b) pa(V) = pa(Xi)
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(c) c is equivalent to the trivial twist 1.

Part 3 is false in general for composite m: for some values of m, one can
find twists ¢ such that ps(Vi) > pis(Xk). One can also find non-trivial twists
such that py(Vi) = pa(Xk). See section A.3.

Shioda [Sh82a] has obtained a closed formula for the stable Picard number
for surfaces of prime degree: if n = 2, m is a prime, and p = 1 (mod m) then:

(V) =143(m—1)(m—2).
Similar formulas hold for higher-dimensional hypersurfaces.

PROPOSITION 0.4
Using definitions and notation as above,

1. when n =4, m is prime, and p =1 (mod m),
p2(V) = 1+ 5(m — 1)(3m? — 15m + 20),
2. when n = 6, m is prime, and p =1 (mod m),

73(V) =1+45-7(m — 1)(3m® — 27m?* + 86m — 95).

When m is prime and p = 1 (mod m), Shioda’s method allows such formu-
las to be computed for any specific even dimension. (See Appendix B for the
details.) Similar methods allow one to get formulas that hold for more general
degrees. Of course, these formulas only give the stable Picard numbers. When
there is a non-trivial twist or when m is composite, determining the actual
Picard number over F, is much more delicate. We have computed many of
these—see the tables in Appendix A.

Given a vector ¢ = (co,¢1,...,Cns1) and a character a = (ag, ay,...0n41),
we define, in the usual way, c® := c§°c{' - - -cpiy'. We say c is eztreme if we
have ¢ ¢ (k)™ for any a = (ag,as,...,an41) € AT with j(a) = ¢%. One
reason extreme twists are interesting is the following observation.

THEOREM 0.5

Let V = V*(c) be a diagonal hypersurface of dimension n = 2d and prime
degree m > 3 over k = F,. Suppose that c is extreme. Then the Tate
conjecture holds for Vy, and we have

Pa(Ve) = pa(Ve) = 1.

In the case of an extreme twist, one can also determine the intersection
pairing on the (one dimensional!) image of the d-th Chow group in the coho-
mology.

For general diagonal hypersurfaces V = V2 (c), we can use the results of
Ran [Ran81], Shioda [Sh79a, Sh79b, Sh83b] and Tate [Ta65] to establish the
validity of the Tate conjecture in the following cases.
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ProposITION 0.6

Let V = V*(c) be a diagonal hypersurface of dimension n = 2d > 2 and degree
m > 3 with twist c over a finite field F, with ¢ =p’ =1 (mod m). Then the
Tate conjecture holds in the following cases:

1. m is prime, any n, and p =1 (mod m).
2. m <20, any n, and p =1 (mod m).
3. m=21,n<10,and p=1 (mod m).

4. m and n arbitrary and there exists j such that p’ = —1 (mod m) (equiv-
alently, V is supersingular).

Since diagonal hypersurfaces V = V(c) are complete intersections, their
zeta-functions have the form:
Q, )™
ZW,T) = ——"——nr.
1) ({1 ~4'T)
In our case, Q(V,T) is a polynomial of degree ==1{(m — 1)**! + (—1)"*+2}
with integral coefficients, which factors over C as

Q(v) T) = H (l - 3(e, a)T)

acAP

where the product is taken over all twisted Jacobi sums, J(c, a).

Studying the asymptotic behaviour of the zeta-function as s — r clearly
boils down, then, to studying the asymptotic behaviour of the polynomial
Q(V,q™®) as s tends to r, 0 < r < n. To do this, we first evaluate the
polynomials Q(V4, ¢~ ") corresponding to motives V4 as s — r, and then glue
together the motivic quantities to yield the following global results.

THEOREM 0.7
Let V = V*(c) be a diagonal hypersurface with twist ¢ and let X = V™(1) be
the Fermat variety, both of dimension n and degree m over k = IF,.

(I) Let n = 2d be even, and assume that the degree m is prime, and that
m > 3. Put Q*(V,T) = (1 — ¢?T)Q(V,T). Define quantities e4(Vi), 6a(Vi)
and wy(r), as follows:

pa(Vk) — Pd(Vk), 54(Vk) = Ba(V) — pa(Vk)

ea(Ve) = m—1 m—1

and for any r, 0 < r < n,

r

wy(r) = 3 (r —i)A""H(WV).

=0
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Then the following assertions hold for the limit

. O
= (1 — g@-3)pav)’

1. IfV is supersingular (resp. strongly supersingular), then the limit is equal
to £mc4Ve) (resp. equal to 1).

2. IfV is of Hodge-Witt type, then the limit takes the following form:

N Bd(vk)mad(vk)'
qu(d)

Here B4(V;) is the global “Brauer number” of Vy. It is a positive integer,
and is a square up to powers of m.

If c is extreme, then B%(V) is a square.

(II) Let n=2d+ 1 and m > 3 be prime. Then for any integer r, 0 < r < d,

Dr(V,
Qg ) = —qw(v(,’;)

where D" (V) is a positive integer, and D" (Vi) = D" "(Vy).

Detailed accounts of Theorem 0.7 can be found in Chapters 6 and 7 below.
The hypothesis of m being prime is not a subtle one, and is present mostly for
technical reasons. One expects that there are similar (though perhaps more
complicated) formulas for the cases of composite m. Our calculations are in
general agreement with this expectation; see the comments in Chapter 9.

For diagonal hypersurfaces V = VJ*(c) of dimension n = 2 and degree
m > 3 with twist c over k = F,, the Tate conjecture holds for V over k,
so that V satisfies the Artin-Tate formula relative to k (cf. Milne [Mil75]).
One of the motivations of the Lichtenbaum—Milne conjecture is to generalize
the Artin-Tate formula to higher (even) dimensional varieties. For diagonal
hypersurfaces V = V7*(c) of dimension n = 2d with twist c over k = F,,
Lichtenbaum and Milne have shown that assuming the existence of complexes
of étale sheaves Z(r) having certain properties yields the following formula:

THEOREM 0.8

Assume the étale complexes Z(r) exist and satisfy the conditions in [Mil86,
Mil88]. Let V = V™(c) be a diagonal hypersurface of dimension n = 2d and
(prime) degree m > 3 with twist c over k = IF,. Assume that the cycle map
CHY(Vy) — H™(Vi, Z(d)) is surjective and that the Tate conjecture holds for
Vi. Then Vy satisfies the Lichtenbaum—Milne formula:

Q' (V,q™) | #Br‘(V)ldet A4(Vy)|
ll—r.!clt 1- qd_-’)ﬂd(vk) =+ qa,,,V(d) ’ (T)
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where Br*(Vy) = #H"!(Vk, Z(d)) is the “Brauer” group of Vi and # Br®(Vy)
is its order, A%(Vy) is the image of the d-th Chow group CH%(Vy) in H™(V;, Z(d)),
{D;|i=1,-++,pa(Vk)} is a Z-basis for A4(Vi), det A*(Vi) = det(D; - D;) is
the determinant of the intersection matrix on A4(Vy), and ay(d) = s"*(d) —
25™(d) +wy(d) where wy(d) = ¥ o(d —i)h*"*(V) with h'J = dim, H’(V, %),
and s'(d) = dim H'(V, Z,(d)) (as a perfect group scheme).
For the definition of H, see Milne [Mil86], p. 307.)

We refer to the formula in this theorem as the Lichtenbaum-Milne formula.
It is known to hold for d = 1 or d = 2 whenever the Tate conjecture holds.
When the Brauer group Br¢(V;) exists, its order is a square, and this gives us
a handle on the (otherwise quite mysterious) value of this term in the formula.

Since we can get information about the special values directly from proper-
ties of twisted Jacobi sums, we can compare these results with those predicted
by the Lichtenbaum-Milne formula.

THEOREM 0.9

The notation of Theorem 0.8 remains in force. Assume that m is prime (so the
Tate conjecture holds), that the complexes Z(r) exist, and that the cycle map
CH?Y(Wx) — H™(V, Z(d)) is surjective (so the Lichtenbaum-Milne formula (1)
on the preceding page is valid). Then we have, for m prime:

(I) The following assertions hold:
1. If Vg is supersingular, then

# Bri(Vy)| det A(Vy)| = ™ @DmeaOw),

2. If Vy is of Hodge-Witt type, then

# Bri(Vi)| det A4(Ve)| = B*(Ve)mPe),

(II) For each prime £ with (¢,m) = 1, the following assertions hold:

1. For a prime ¢ with (¢, mp) =1,

1 if Vi is supersingular

B =
#Bri(Vee-t {IB"(V,,)I[l if Vi is of Hodge-Witt type

and
l det Ad(vk) Rz Z¢| =

2. For the prime p = char(k), if V; is of Hodge-Witt type, then

#Br(Vi)p—tors = |B*(Vi)|;! and | det A%(Vx) @z Z,| = 1.



